Triptolide (1) is a structurally unique diterpene triepoxide isolated from a traditional Chinese medicinal plant with anti-inflammatory, immunosuppressive, contraceptive and antitumor activities. Its molecular mechanism of action, however, has remained largely elusive to date. We report that triptolide covalently binds to human XPB/ERCC3, a subunit of the transcription factor TFIIH, and inhibits its DNA-dependent ATPase activity, which leads to the inhibition of RNA Polymerase II mediated transcription and likely nucleotide excision repair. The identification of XPB as the target of triptolide accounts for the majority of the known biological activities of triptolide. These findings also suggest that triptolide can serve as a novel molecular probe for studying transcription and, potentially, as a new type of anticancer agents through inhibition of the ATPase activity of XPB.
Triptolide is a bioactive ingredient in traditional Chinese medicine that exhibits diverse biologic properties, including anticancer properties. Among its many putative targets, this compound has been reported to bind to XPB, the largest subunit of general transcription factor TFIIH, and to cause degradation of the largest subunit Rpb1 of RNA polymerase II (RNAPII). In this study, we clarify multiple important questions concerning the significance and basis for triptolide action at this core target. Triptolide decreased Rpb1 levels in cancer cells in a manner that was correlated tightly with its cytotoxic activity. Compound exposure blocked RNAPII at promoters and decreased chromatin-bound RNAPII, both upstream and within all genes that were examined, also leading to Ser-5 hyperphosphorylation and increased ubiqutination within the Rbp1 carboxy-terminal domain. Notably, cotreatment with inhibitors of the proteasome or the cyclin-dependent kinase CDK7 inhibitors abolished the ability of triptolide to ablate Rpb1. Together, our results show that triptolide triggers a CDK7-mediated degradation of RNAPII that may offer an explanation to many of its therapeutic properties, including its robust and promising anticancer properties. Cancer Res; 72(20); 5363-73. Ó2012 AACR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.