The neuroprotective effects of platelet-derived growth factor (PDGF) and the major signaling pathways involved in these were examined using primary cultured mouse cortical neurons subjected to H(2)O(2)-induced oxidative stress. The specific function of the PDGF beta-receptor (PDGFR-beta) was examined by the selective deletion of the corresponding gene using the Cre-loxP system in vitro. In wild-type neurons, PDGF-BB enhanced the survival of these neurons and suppressed H(2)O(2)-induced caspase-3 activation. The prosurvival effect of PDGF-AA was less than that of PDGF-BB. PDGF-BB highly activated Akt, extracellular signal-regulated kinase (ERK), c-jun amino-terminal kinase (JNK) and p38. PDGF-AA activated these molecules at lesser extent than PDGF-BB. In particular, PDGF-AA induced activation of Akt was at very low level. The neuroprotective effects of PDGF-BB were antagonized by inhibitors of phosphatidylinositol 3-kinase (PI3-K), mitogen-activated protein kinase kinase (MEK), JNK and p38. The PDGFR-beta-depleted neurons showed increased vulnerability to oxidative stress, and less responsiveness to PDGF-BB-induced cytoprotection and signal activation, in which Akt activation was most strongly suppressed. After all, these results demonstrated the neuroprotective effects of PDGF and the signaling pathways involved against oxidative stress. The effects of PDGF-BB were more potent than those of PDGF-AA. This might be due to the activation and additive effects of two PDGFRs after PDGF-BB stimulation. Furthermore, the PI3-K/Akt pathway that was deduced to be preferentially activated by PDGFR-beta may explain the potent effects of PDGF-BB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.