Bacterial cellulose (BC) has attracted increasing attention as a novel wound dressing material, but its antimicrobial activity, which is one of the critical skin-barrier functions in wound healing, is not sufficient for use in practical applications. To overcome such a deficiency, silver nanoparticles were generated and self-assembled on the surface of BC nanofibers, forming a stable and evenly distributed Ag nanoparticle coated BC nanofiber (AgNP-BC). The performance of AgNP-BC was systematically studied in terms of antibacterial activities, cytocompatibility and effects on wound healing. The results showed that AgNP-BC exhibited significant antibacterial activity against Staphylococcus aureus. Moreover, AgNP-BC allowed attachment, and growth of rat fibroblasts with low cytotoxicity emerged. Based on these advantages, AgNP-BC samples were applied in a second-degree rat wound model. Wound flora showed a significant reduction during the healing. The fresh epidermal and dermis thicknesses with AgNP-BC samples were 111 and 855 µm respectively, higher than 74 and 619 µm for BC groups and 57 and 473 µm for untreated control wounds. The results demonstrated that AgNP-BC could reduce inflammation and promote scald wound healing.
An ionic crosslinking nanocellulose/sodium alginate (BC/SA) hybrid hydrogel was prepared as a dual-stimuli responsive release system. The drug release rate of BC/SA hybrid hydrogels in vitro not only depend on pH value but also depend on the presence of electric stimulus.
The purpose of this study was to investigate the effects of CaF(2) on the apatite formation ability of tricalcium silicates (Ca(3)SiO(5), C(3)S) and the mechanism of apatite formation on C(3)S pastes. Different amounts of CaF(2) (0, 1, 2 and 3 wt%) were mixed in the raw materials during the synthesis process of C(3)S. The apatite formation ability of the CaF(2) doping C(3)S was examined by soaking the one-day setting pastes in simulated body fluid (SBF). The fluoride concentrations, pH values, structural and morphological variations of the pastes were examined during soaking in SBF. With the addition of CaF(2), the initial crystalline apatite formation time of the pastes was decreased from three days to one day. After soaking for seven days, the thicknesses of apatite layers depositing on the surface of C(3)S doped with 0, 1, 2 and 3 wt% CaF(2) were about 88, 102, 168 and 136 microm, respectively. C(3)S doped with 2 wt% CaF(2) showed the better ability to induce the formation of apatite. Furthermore, the mechanism of the apatite formation of the CaF(2) doping C(3)S pastes may be attributed to the formation and stability of F-substituted apatite determined by x-ray photoelectron spectroscopy (XPS) at the early age. The results indicated that CaF(2) doping C(3)S has better in vitro bioactivity, and may be used to prepare novel bone cement.
We previously reported the superior effect of minocycline against drug-resistant Plasmodium falciparum in vitro. Here, we report that RT-PCR for falciparum parasites treated with minocycline revealed reduced levels of RNA transcripts of the mitochondrion-encoded genes such as the COI and Cyb genes, as well as the plastid-encoded RNA polymerase subunit (rpoB/C) gene. However, we detected no apparent effects of the antibiotic on the transcription of merozoite surface antigen and small subunit rRNA genes encoded by the nucleus. In addition, treatment with chloroquine and pyrimethamine showed no substantial reduction of any RT-PCR products. These findings suggest that tetracycline antibiotics selectively inhibit both mitochondrial and plastid activity. ß
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.