Nano-pillar arrays are presented ranging from 200 nm to 600 nm as SERS substrates for mycotoxin detection, fabricated by two-photon polymerization. This versatile approach gives new opportunities for material characterization in chemical and biological applications.
We present a Raman spectroscopy setup containing a conical beam shaper in combination with a freeform segmented reflector for surface enhanced Raman scattering (SERS) analysis. The freeform segmented reflector and the conical beam shaper are designed by numerical approaches and fabricated by means of ultra-precision diamond tooling. The segmented reflector has a numerical aperture of 0.984 and a working distance of 1mm for SERS measurements. We perform systematic simulations using non-sequential ray tracing to assess the detecting abilities of the designed SERS-based system. We implement a proof-of-concept setup and demonstrate the confocal behavior by measuring the SERS signal of 10µM rhodamine B solution. The experimental results agree well with the simulations concerning the misalignment tolerances of the beam shaper with respect to the segmented reflector and the misalignment tolerances of the collecting fiber. In addition, we conduct benchmark SERS measurements by using a 60× objective lens with a numerical aperture of 0.85. We find that the main Raman intensity of rhodamine B at 1502 cm-1 obtained by our segmented reflector working together with the conical beam shaper is approximately 30% higher compared to the commercial objective lens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.