This study determined the effect of Bacillus XZM extracellular polymeric substances (EPS) production on the arsenic adsorption capacity of the Biochar-Bacillus XZM (BCXZM) composite. The Bacillus XZM was immobilized on corn cobs multifunction biochar to generate the BCXZM composite. The arsenic adsorption capacity of BCXZM composite was optimized at different pHs and As(V) concentrations using a central composite design (CCD)22 and maximum adsorption capacity (42.3 mg/g) was attained at pH 6.9 and 48.9 mg/L As(V) dose. The BCXZM composite showed a higher arsenic adsorption than biochar alone, which was further confirmed through scanning electron microscopy (SEM) micrographs, EXD graph and elemental overlay as well. The bacterial EPS production was sensitive to the pH, which caused a major shift in the –NH, –OH, –CH, –C=O, –C–N, –SH, –COO and aromatic/-NO2 peaks of FTIR spectra. Regarding the techno economic analysis, it was revealed that USD 6.24 are required to prepare the BCXZM composite to treat 1000 gallons of drinking water (with 50 µg/L of arsenic). Our findings provide insights (such as adsorbent dose, optimum operating temperature and reaction time, and pollution load) for the potential application of the BCXZM composite as bedding material in fixed-bed bioreactors for the bioremediation of arsenic-contaminated water in future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.