The production of fine chemicals using CO2 as C1 building block through inexpensive heterogeneous catalysts with high efficiency under low pressure is challenging. Herein we propose for the first time the utilization of a multifunctional heterogeneous zinc‐modified HZSM‐5 (ZnHZSM‐5) catalyst for upgrading CO2 by incorporation into cyclic carbonates from CO2 and epoxides. Owing to the nice surface properties such as abundant Lewis acid, Brønsted acid and Lewis base sites, large surface area, and plenty of micropores, CO2 could be concentrated and well activated in ZnHZSM‐5 verified by CO2‐TPD, TG‐MS, etc. Meanwhile, the epoxides were also activated through metal center and hydrogen bond. Therefore, the reaction can easily assemble at the catalyst interface and show exceptional performance, affording the aimed products with high yield of up to 99% in the presence of commercial tetra‐n‐propylammonium bromide (90% in kilogram scale with 0.004 mol% ZnHZSM‐5 and 0.015 mol% nPr4NBr).
It is promising and challenging to achieve the effective construction of carbonates using CO2 and a non-noble metal catalyst. Herein, selective catalytic conversion of CO2 and switchable alcohol candidates to produce linear or cyclic carbonates and α-hydroxy ketones via effective zinc catalyst was developed. A series of primary alcohols and cyclohexanol, 1,2-diols, and water can serve as nucleophiles to give alkyl or aryl 2-substituted-3-oxobutan-2-yl carbonates, substituted 1,3-dioxolan-2-ones, 3-substituted 3-hydroxybutan-2-ones, respectively with excellent selectivity and high yields.
It remains a great challenge to convert CO2 into high value‐added products under ambient pressure. Herein, an efficient dual‐component catalytic system, i. e., Ag(I)/(C2H5)4NCl was developed for the synthesis of various β‐oxopropylcarbamates via one‐pot three‐component coupling of CO2, secondary amines and propargylic alcohols under atmospheric pressure. Besides, the strategy avoided the use of any additional ligand and basic species, and excellent selectivity was achieved with a yield of up to 98%. Additionally, 13Ccarbonyl‐labeled and control experiments were carefully performed to demonstrate the mechanism. Notably, this new method was also applied efficiently in quantitative chemical fixation of CO2, i. e., the two‐component reaction of propargylic alcohols and ammonium carbamates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.