MgO thin films with different textures are fabricated by the ion beam assisted (IBAD) method on the Y2O3/Al2O3 buffered C276 tape. Then a CeO2 layer is directly grown on the IBAD-MgO film by the pulsed laser deposition (PLD) method. Effects of IBAD-MgO texture, substrate temperature and thickness on the grain alignment of the CeO2 layer are investigated. Film characterization is performed by x-ray diffraction and atomic force microscopy. It is found that the orientation and texture degree of the CeO2 layer are very sensitive to the IBAD-MgO texture. By optimizing the IBAD-MgO texture, CeO2 has pure (002) orientation and excellent biaxial texture deposited in a broad substrate temperature range. In addition, the PLD-CeO2 layer has a thickness effect. Under the optimized experimental condition, the PLD-CeO2 layer has a high in-plane texture of Δ𝜑 = 2.9 ∘ and a smooth surface with an rms surface roughness of less than 2 nm. The critical current density 𝐽c of a 0.4-𝜇m-thick YBCO film deposited on the CeO2 layer is 6.25 × 10 6 A/cm 2 at 77 K and a self-field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.