We present a novel method for reconstructing clothed humans from a sparse set of, e.g., 1–6 RGB images. Despite impressive results from recent works employing deep implicit representation, we revisit the volumetric approach and demonstrate that better performance can be achieved with proper system design. The volumetric representation offers significant advantages in leveraging 3D spatial context through 3D convolutions, and the notorious quantization error is largely negligible with a reasonably large yet affordable volume resolution, e.g., 512. To handle memory and computation costs, we propose a sophisticated coarse-to-fine strategy with voxel culling and subspace sparse convolution. Our method starts with a discretized visual hull to compute a coarse shape and then focuses on a narrow band nearby the coarse shape for refinement. Once the shape is reconstructed, we adopt an image-based rendering approach, which computes the colors of surface points by blending input images with learned weights. Extensive experimental results show that our method significantly reduces the mean point-to-surface (P2S) precision of state-of-the-art methods by more than 50% to achieve approximately 2mm accuracy with a 512 volume resolution. Additionally, images rendered from our textured model achieve a higher peak signal-to-noise ratio (PSNR) compared to state-of-the-art methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.