Instance-level human analysis is common in real-life scenarios and has multiple manifestations, such as human part segmentation, dense pose estimation, human-object interactions, etc. Models need to distinguish different human instances in the image panel and learn rich features to represent the details of each instance. In this paper, we present an end-to-end pipeline for solving the instance-level human analysis, named Parsing R-CNN. It processes a set of human instances simultaneously through comprehensive considering the characteristics of region-based approach and the appearance of a human, thus allowing representing the details of instances.Parsing R-CNN is very flexible and efficient, which is applicable to many issues in human instance analysis. Our approach outperforms all state-of-the-art methods on CIHP (Crowd Instance-level Human Parsing), MHP v2.0 (Multi-Human Parsing) and DensePose-COCO datasets. Based on the proposed Parsing R-CNN, we reach the 1st place in the COCO 2018 Challenge DensePose Estimation task. Code and models are public available 1 .
Multiple human parsing aims to segment various human parts and associate each part with the corresponding instance simultaneously. This is a very challenging task due to the diverse human appearance, semantic ambiguity of different body parts, and complex background. Through analysis of multiple human parsing task, we observe that human-centric global perception and accurate instance-level parsing scoring are crucial for obtaining high-quality results. But the most state-of-the-art methods have not paid enough attention to these issues. To reverse this phenomenon, we present Renovating Parsing R-CNN (RP R-CNN), which introduces a global semantic enhanced feature pyramid network and a parsing re-scoring network into the existing high-performance pipeline. The proposed RP R-CNN adopts global semantic representation to enhance multi-scale features for generating human parsing maps, and regresses a confidence score to represent its quality. Extensive experiments show that RP R-CNN performs favorably against state-of-the-art methods on CIHP and MHP-v2 datasets. Code and models are available at https://github.com/soeaver/RP-R-CNN.
The development of convolutional neural networks has promoted the progress of computeraided diagnostic systems. Details in medical image, such as the texture and tissue structure, are crucial features for diagnosis. Therefore, large input images combined with deep convolution neural networks are adopted to boost the performance in recent research of chest X-ray diagnosis. Meanwhile, due to the variable sizes of thoracic diseases, many researchers have worked to introduce additional module to capture multi-scale feature of images in CNN. However, these efforts hardly consider the computational costs of large inputs and introduced additional modules. This paper aims to automatically diagnose diseases on chest X-rays images quickly and effectively. We propose the multi-kernel depthwise convolution(MD-Conv) which contains depthwise convolution kernels with different filter sizes in one depthwise convolution layer. MD-Conv has high calculation efficiency and few parameters. Because its ability to learn multi-scale feature based on the multi-size kernels, it is appropriate for medical images diagnosis tasks in which abnormalities varied in sizes. In addition, larger depthwise convolution kernels are adopted in MD-Conv to obtain a larger receptive field efficiently, which can ensure sufficient receptive field for high resolution inputs. MD-Conv can be easily applied in modern lightweight networks to replace the normal depthwise convolution layer. We conduct experiments on the Chest X-ray 14 Dataset, which is the largest available chest x-ray dataset, and obtain competitive results. We also evaluate the MD-Conv on the new released dataset for pediatric pneumonia diagnosis. We obtain a better performance of 98.3% AUC than original paper (96.8%) for recognize pneumonia versus normal. Meanwhile we compare the FLOPs and Params of different models to show their efficiency for chest X-rays recognition. INDEX TERMS Chest x-ray recognition, lightweight networks, multi-kernels depthwise convolution.
BackgroundAptamer-protein interacting pairs play a variety of physiological functions and therapeutic potentials in organisms. Rapidly and effectively predicting aptamer-protein interacting pairs is significant to design aptamers binding to certain interested proteins, which will give insight into understanding mechanisms of aptamer-protein interacting pairs and developing aptamer-based therapies.ResultsIn this study, an ensemble method is presented to predict aptamer-protein interacting pairs with hybrid features. The features for aptamers are extracted from Pseudo K-tuple Nucleotide Composition (PseKNC) while the features for proteins incorporate Discrete Cosine Transformation (DCT), disorder information, and bi-gram Position Specific Scoring Matrix (PSSM). We investigate predictive capabilities of various feature spaces. The proposed ensemble method obtains the best performance with Youden’s Index of 0.380, using the hybrid feature space of PseKNC, DCT, bi-gram PSSM, and disorder information by 10-fold cross validation. The Relief-Incremental Feature Selection (IFS) method is adopted to obtain the optimal feature set. Based on the optimal feature set, the proposed method achieves a balanced performance with a sensitivity of 0.753 and a specificity of 0.725 on the training dataset, which indicates that this method can solve the imbalanced data problem effectively. To evaluate the prediction performance objectively, an independent testing dataset is used to evaluate the proposed method. Encouragingly, our proposed method performs better than previous study with a sensitivity of 0.738 and a Youden’s Index of 0.451.ConclusionsThese results suggest that the proposed method can be a potential candidate for aptamer-protein interacting pair prediction, which may contribute to finding novel aptamer-protein interacting pairs and understanding the relationship between aptamers and proteins.Electronic supplementary materialThe online version of this article (doi:10.1186/s12859-016-1087-5) contains supplementary material, which is available to authorized users.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.