S. suis is an important zoonotic pathogen from sick and recessive carrier pigs that poses a serious threat to animal husbandry production and public health. It usually causes horizontal transmission among pigs. The morbidity and mortality of this disease are very high. Human infection is caused through direct or indirect contact with sick pigs. The two large-scale outbreaks in China were due to the outbreak of S. suis on pig farms, which spread to human infection; thus, detecting S. suis in pig herds is crucial. At present, the commercial S. suis ELISA type 2 kits on the market can only detect single serotypes, high probabilities of interaction reactions, and biosafety risks when using inactivated S. suis as an antigen. Phosphate-3-glyceraldehyde dehydrogenase (GAPDH), muramidase-released protein (MRP), and dihydrolipoamide dehydrogenase (DLDH) are important S. suis type 2, S. suis type 7, and S. suis type 9 protective antigens. This study purified the GMD protein (B-cell-dominant epitopes of GAPDH, MRP, and DLDH antigens) and used a diverse combination of dominant epitopes of the multiple different antigens as coated antigens, improving the sensitivity and safety of the indirect ELISA experiments. An indirect ELISA method (GMD-ELISA) was developed for detecting S. suis antibodies. The antigen—antibody response was optimized using checkerboard titration. The results of testing using ELISA for Salmonella enterica (S. enterica), Escherichia coli (E. coli), Staphylococcus aureus (SA), and Streptococcus pyogenes (S. pyogenes) were all negative, indicating that this method had strong specificity. The results were still positive when the dilution ratio of S. suis-positive serum reached 1:6, 400, thus indicating that the method had high sensitivity. The results of the reproducibility assay for indirect ELISA showed that the intra-assay coefficient of variation and the inter-assay coefficient of variation were less than 10%, indicating that the method had good repeatability. We investigated the seroprevalence of S. suis in 167 serum samples collected in East China, and 33.5% of the samples were positive for antibodies against S. suis, indicating that the prevalence of S. suis is high in pig farms in Eastern China. The novel GMD-ELISA is a convenient, sensitive, and specific diagnostic method that provides technical support for rapid diagnosis and epidemiological investigation.
Streptococcus suis (S. suis) is an important zoonotic pathogen from sick and recessive carrier pigs, which poses a serious threat to animal husbandry production and public health. It usually causes horizontal transmission among pigs and the morbidity and mortality of this disease are very high. Human infection is caused through direct or indirect contact with sick pigs. The two large-scale outbreaks of S. suis in China were due to the outbreak of S. suis on pig farms, which spread to human infection, so its detection of S. suis pig herds is very important. This study developed an indirect ELISA (SS-GMD-ELISA) for the detection of S. suis antibody. The antigen-antibody response was optimized by checkerboard titration. The results of testing by ELISA for salmonella enterica, Escherichia coli and staphylococcus aureus were all negative, indicating that this method had strong specificity. The results were still positive when the dilution ratio of S. suis positive serum reached 1:6,400, indicating that the method had high sensitivity. Repeatability test results showed that the intra-assay coefficient of variation and the inter-assay coefficient of variation were less than 10% ,indicating that the method had good repeatability. The seroprevalence of S. suis in 167 serum specimens collected in eastern China was also investigated and 33.5% of the samples evaluated positive for anti-S. suis IgG antibodies, indicating that the seroprevalence of S. suis was high in pig populations in China, The new SS-GMD-ELISA was a convenient, sensitive and specific diagnostic method, which provided technical support for the rapid diagnosis, epidemiological investigation and prevention and evaluation of vaccines.
Streptococcus suis (S. suis) is a bacterial pathogen of pigs that has a major animal health and economic impact on the pig industry. Bovine herpesvirus-4 (BoHV-4) is a new virus-based vaccine vector that has been used for the immunogenic delivery of antigens from a variety of pathogens. In the present study, two recombinant BoHV-4-based vectors were evaluated for their ability to induce immunity and protection against S. suis in a rabbit model. The GMD protein is a fusion protein consisting of multiple dominant B-cell epitopes ((B-cell dominant epitopes of GAPDH, MRP, and DLDH antigens) (BoHV-4/GMD)) and the second suilysin (SLY) (BoHV-4/SLY) from S. suis serotype 2 (SS2). Both GMD and SLY delivered by the BoHV-4 vectors were recognized by sera from SS2-infected rabbits. The vaccination of rabbits with the BoHV-4 vectors induced antibodies against SS2, as well as against additional S. suis serotypes, SS7 and SS9. However, sera from BoHV-4/GMD-vaccinated animals promoted a significant level of phagocytic activity by pulmonary alveolar macrophages (PAMs) against SS2, SS7, and SS9. In contrast, sera from rabbits immunized with BoHV-4/SLY induced PAM phagocytic activity against only SS2. In addition, BoHV-4 vaccines differed in the associated level of protection against lethal SS2 challenge, which ranged from high (71.4%) to low (12.5%) for BoHV-4/GMD and BoHV-4/SLY, respectively. These data suggest BoHV-4/GMD as a promising vaccine candidate against S. suis disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.