The solution structure and dynamics of human insulin are investigated by 2D 1H NMR spectroscopy in reference to a previously analyzed analogue, des-pentapeptide(B26-B30) insulin (DPI; Hua, Q.X., & Weiss, M.A. (1990) Biochemistry 29, 10545-10555). This spectroscopic comparison is of interest since (i) the structure of the C-terminal region of the B-chain has not been determined in the monomeric state and (ii) the role of this region in binding to the insulin receptor has been the subject of long-standing speculation. The present NMR studies are conducted in the presence of an organic cosolvent (20% acetic acid), under which conditions both proteins are monomeric and stably folded. Complete sequential assignment of human insulin is obtained and leads to the following conclusions. (1) The secondary structure of the insulin monomer (three alpha-helices and B-chain beta-turn) is similar to that observed in the 2-Zn crystal state. (2) The folding of DPI is essentially the same as the corresponding portion of intact insulin, in accord with the similarities between their respective crystal structures. However, differences between insulin and DPI are observed in the extent of conformational broadening of amide resonances, indicating that the presence or absence of residues B26-B30 influences the overall dynamics of the protein on the millisecond time scale. (3) Residues B24-B28 adopt an extended configuration in the monomer and pack against the hydrophobic core as in crystallographic dimers; residues B29 and B30 are largely disordered. This configuration differs from that described in a more organic milieu (35% acetonitrile; Kline, A.D., & Justice, R.M., Jr. (1990) Biochemistry 29, 2906-2913), suggesting that the conformation of insulin in the latter study may have been influenced by solvent composition. (4) The insulin fold is shown to provide a model for collective motions in a protein with implications for the mechanism of protein-protein recognition. To our knowledge, this paper describes the first detailed analysis of a protein NMR spectrum under conditions of extensive conformational broadening. Such an analysis is made possible in the present case by comparative study of an analogue (DPI) with more tractable spectroscopic properties.
A hierarchical pathway of protein folding can enable segmental unfolding by design. A monomeric insulin analogue containing pairwise substitution of internal A6-A11 cystine with serine [[Ser(A6),Ser(A11),Asp(B10),Lys(B28),Pro(B29)]insulin (DKP[A6-A11](Ser))] was previously investigated as a model of an oxidative protein-folding intermediate [Hua, Q. X., et al. (1996) J. Mol. Biol. 264, 390-403]. Its structure exhibits local unfolding of an adjoining amphipathic alpha-helix (residues A1-A8), leading to a 2000-fold reduction in activity. Such severe loss of function, unusual among mutant insulins, is proposed to reflect the cost of induced fit: receptor-directed restoration of the alpha-helix and its engagement in the hormone's hydrophobic core. To test this hypothesis, we have synthesized and characterized the corresponding alanine analogue [[Ala(A6),Ala(A11),Asp(B10),Lys(B28), Pro(B29)]insulin (DKP[A6-A11](Ala))]. Untethering the A6-A11 disulfide bridge by either amino acid causes similar perturbations in structure and dynamics as probed by circular dichroism and (1)H NMR spectroscopy. The analogues also exhibit similar decrements in thermodynamic stability relative to that of the parent monomer as probed by equilibrium denaturation studies (Delta Delta G(u) = 3.0 +/- 0.5 kcal/mol). Despite such similarities, the alanine analogue is 50 times more active than the serine analogue. Enhanced receptor binding (Delta Delta G = 2.2 kcal/mol) is in accord with alanine's greater helical propensity and more favorable hydrophobic-transfer free energy. The success of an induced-fit model highlights the applicability of general folding principles to a complex binding process. Comparison of DKP[A6-A11](Ser) and DKP[A6-A11](Ala) supports the hypothesis that the native A1-A8 alpha-helix functions as a preformed recognition element tethered by insulin's intrachain disulfide bridge. Segmental unfolding by design provides a novel approach to dissecting structure-activity relationships.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.