The roles of various plasma agents in the inactivation of bacteria have recently been investigated. However, up to now, the effect of the charged particles on the inactivation of bacteria is not well understood. In this paper, an atmospheric pressure plasma jet device, which generates a cold plasma plume carrying a peak current of 300 mA, is used to investigate the role of the charged particles in the inactivation process. It is found that the charged particles play a minor role in the inactivation process when He/N2(3%) is used as working gas. On the other hand, when He/O2(3%) is used, the charged particles are expected to play an important role in the inactivation of bacteria. Further analysis shows that the negative ions O2− might be the charged particles that are playing the role. Besides, it is found that the active species, including O, O3, and metastable state O2∗, can play a crucial role in the inactivation of the bacteria. However, the excited He∗, N2 C Π3u, and N2+ B Σ2u+ have no significant direct effect on the inactivation of bacteria. It is also concluded that heat and UV play no or minor role in the inactivation process.
A single electrode room-temperature atmospheric pressure plasma plume generated between a high-voltage electrode and the surrounding room air is reported. The plasma plume has a peak current of about 360mA. This is highest current carried by a room-temperature plasma plume ever reported. The rotational and vibrational temperature of the plasma plume is about 300 and 2950K, respectively. Emission spectra show that excited species, such as O, OH, N2+, etc., are present in the plasma plume.
In this letter, a room temperature atmospheric pressure plasma jet device is reported. The high voltage electrode of the device is covered by a quartz tube with one end closed. The device, which is driven by a kilohertz ac power supply, is capable of generating a plasma plume up to 11cm long in the surrounding room air. The rotational and vibrational temperatures of the plasma plume are 300 and 2300K, respectively. A simple electrical model shows that, when the plasma plume is contacted with a human, the voltage drop on the human is less than 66V for applied voltage of 5kV (rms).
The characteristics of plasma temperatures (gas temperature and electron excitation temperature) and electron density in a pulsed-dc excited atmospheric helium plasma jet are studied by relative and absolute optical emission spectroscopy (OES). High-resolution OES is performed for the helium and hydrogen lines for the determination of electron density through the Stark broadening mechanism. A superposition fitting method composed of two component profiles corresponding to two different electron densities is developed to fit the investigated lines. Electron densities of the orders of magnitude of 10 21 and 10 20 m −3 are characterized for the center and edge regions in the jet discharge when the applied voltage is higher than 13.0 kV. The atomic state distribution function (ASDF) of helium demonstrates that the discharge deviates from the Boltzmann-Saha equilibrium state, especially for the helium lower levels, which are significantly overpopulated. Local electron excitation temperatures T 13 and T spec corresponding to the lower and upper parts of the helium ASDF are defined and found to range from 1.2 eV to 1.4 eV and 0.2 eV to 0.3 eV, respectively. A comparative analysis shows that the Saha balance is valid in the discharge for helium atoms at high excited states.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.