Due to the complicated nature of carbon dots (CDs), fluorescence mechanism of red fluorescent CDs is still unrevealed and features highly controversial. Reliable and effective strategies for manipulating the red fluorescence of CDs are urgently needed. Herein, CDs with one‐photon excited (622 nm, QYs ≈ 17%) and two‐photon (629 nm) excited red fluorescence are prepared by acidifying o‐phenylenediamine‐based reaction sediments. Systematic analysis reveals that the protonation of amino groups increases the particle surface potential, disperse the bulk sediments into nano‐scale CDs. In the meanwhile, amino protonation of pyridinic nitrogen (–N=) structure inserts numerous n orbital energy levels between the π → π* transition, narrows the gap distance for photon transition, and induces red fluorescence emission on CDs. Present research reveals an effective pathway to activate CDs reaction sediments and trigger red emission, thus may open a new avenue for developing CDs with ideal optical properties and promising application prospects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.