In order to improve the accuracy of financial robot audit question answering, we propose, on the premise of processing corpus features, combining Bi-LSTM network and CRF to identify the domain entities, so as to solve the problem of low recognition rate of financial knowledge domain entities, and introducing the mechanism based on attention and CNN network to construct the multigranularity feature question-answering matching model. Finally, the above methods are verified by experiments. The results show that the AUC, MAP, and MRR increase by 0.74%, 0.85%, and 0.81%, respectively, indicating the feasibility of the improved method.
Price forecasting and trading in the international crude oil market are important issues for investors in energy finance. In this study, we propose an alternative forecasting approach for financial derivative price multiple days ahead and simulated trading based on long short-term memory (LSTM). This study aims to evaluate for different multiple days ahead forecasting and trading by deep LSTM-based model using technical analytic features, which have nonlinear behaviors. The effectiveness of LSTM networks trained by backpropagation through time for test objective prediction is explored. Moreover, instead of using only one crude oil market's spot price data as a data source, we build up a crude oil database with the two most important crude oil markets. The results indicate that the proposed approach outperforms others in terms of accuracy, return, and risk aspect. The forecasting and holding (for trade) time horizons are 1–3 days ahead, respectively. For all three multiple days ahead forecasting and trading, the average test accuracy (judged by root mean square error) of two crude oil markets for four datasets of deep LSTM-based model yields best results among all methods. This study also developed trading strategies, and the proposed LSTM-based method also outperforms other benchmark methods on both return and return-risk ratio (judged by Sharpe ratio). The experimental results indicate that the proposed method can help traders make profits in the financial derivative market and is more effective than the state-of-the-art methods in actual trading.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.