The aim of the present study was to clarify whether the cell penetrating peptide of sodium-iodide symporter (NIS) has an effect on the I-131 radiotherapy of thyroid cancer. Firstly, we combined the HIV-1 TAT peptide (a cell penetrating peptide, dTAT) and established a nanoparticle vector (dTAT NP) to study the delivery efficiency of this cell-penetrating strategy for tumor-targeted gene delivery. dTAT NP was transfected into cultured TPC-1 cells as a model to study the effects of I-131 radiotherapy on thyroid cancer. Reverse transcription-quantitative polymerase chain reaction and western blotting results showed that the mRNA and protein expression levels of NIS in the transfected TPC-1 cells were substantially higher than in the negative control cells. MTT and flow cytometric analyses demonstrated that the cell growth and apoptosis rates of the TPC-1 cells were significantly inhibited and activated, respectively, by treatment with dTAT NP. The results of DAPI staining showed that treatment with dTAT NP visibly increased the nuclear apoptosis rate of the TPC-1 cells. The effect of dTAT NP on TPC-1 cells was associated with the promotion of caspase-3 and downregulation of the PI3K/Akt signaling pathway. In summary, the present data provide a pre-clinical proof-of-concept for a novel gene delivery system that efficiently delivers NIS to the targeted cancer cells and presents a satisfactory efficacy. This approach may offer an effective strategy for improving thyroid cancer gene therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.