Two novel solution-processable acceptor-donor-acceptor (A-D-A)-structured organic small molecules with diketopyrrolopyrrole (DPP) as terminal acceptor units and pentathiophene (PTA) or pyrrole-modified pentathiophene (NPTA) as the central donor unit, namely, DPP2(PTA) and DPP2(NPTA), were designed and synthesized. We examined the effects of changing the central bridging heteroatoms of the five-ring-fused thienoacene core identity from sulfur [DPP2(PTA)] to nitrogen [DPP2(NPTA)] in the small-molecule donor material. Replacement of the bridging atom with a different electronic structure has a visible effect on both the optical and electrical properties: DPP2(NPTA), which contains much more electron-rich pyrrole in the central thienoacene unit, possesses red-shifted absorption and a higher HOMO level relative to DPP2(PTA) with the less electron-rich thiophene in the same position. More importantly, substitution of the bridging atoms results in a change of the substituting alkyl chains due to the nature of the heteroatoms, which significantly tailored the crystallization behavior and the ability to form an interpenetrating network in thin-film blends with an electron acceptor. Compared to DPP2(PTA) with no alkyl chain substituting on the central sulfur atom of the PTA unit, DPP2(NPTA) exhibits improved crystallinity and better miscibility with PC71BM probably because of a dodecyl chain on the central nitrogen atom of the NPTA unit. These features endow the DPP2(NPTA)/PC71BM blend film higher hole mobility and better donor/acceptor interpenetrating network morphology. Optimized photovoltaic device fabrication based on DPP2(NPTA)/PC71BM (1.5:1, w/w) has resulted in an average power conversion efficiency (PCE) as high as 3.69% (the maximum PCE was 3.83%). This study demonstrates that subtle changes and tailoring of the molecular structure, such as simply changing the bridging heteroatom in the thienoacene unit in D/A-type small molecules, can strongly affect the physical properties that govern their photovoltaic performances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.