Multienzyme cascade biocatalysis is an efficient synthetic process, avoiding the isolation/purification of intermediates and shifting the reaction equilibrium to the product side.. However, multienzyme systems are often limited by their incompatibility and cross-reactivity. Herein, we report a multiresponsive emulsion to proceed multienzyme reactions sequentially for high reactivity. The emulsion is achieved using a CO 2 , pH, and thermo-responsive block copolymer as a stabilizer, allowing the on-demand control of emulsion morphology and phase composition. Applying this system to a three-step cascade reaction enables the individual optimal condition for each enzyme, and a high overall conversion (ca. 97 % of the calculated limit) is thereby obtained. Moreover, the multiresponsiveness of the emulsion allows the facile and separate yielding/recycling of products, polymers and active enzymes. Besides, the system could be scaled up with a good yield.
The design and construction of polymeric compartmentalized structures in water have been intensively explored for controllable catalysis, but there is still the challenge of setting up catalytic compartments in organic media. Here, we designed a simple block copolymer, PCL-b-PEG-b-PCL, to construct a stable and multi-compartmentalized emulsion in an organic solvent by hand-shaking. This gentle emulsion preparation allowed a successful encapsulation of vulnerable biocatalysts such as benzaldehyde lyase (BAL) and alcohol dehydrogenase (ADH). The compartmentalization provided the emulsion with an exceptionally large interfacial area that could enhance BAL activity up to 225 times as compared to the traditional biphasic system. Moreover, the system could be easily scaled up due to its facile preparation with low cost. Therefore, our results pave the way for developing compartmentalized structures in solvents for biocatalysis in large-scale synthetic chemistry.
Biocatalysis is increasingly being explored for the sustainable development of green industry. Though enzymes show great industrial potential with their high efficiency, specificity, and selectivity, they suffer from poor usability and stability under abiological conditions. To solve these problems, researchers have fabricated nano-and micro-sized biocatalytic reactors based on the self-assembly of various polymers, leading to highly stable, functional, and reusable biocatalytic systems. This Review highlights recent progress in self-assembled polymeric nano-and microreactors for biocatalytic synthesis, including polymersomes, reverse micelles, polymer emulsions, Pickering emulsions, and static emulsions. We categorize these reactors into monophasic and biphasic systems and discuss their structural characteristics and latest successes with representative examples. We also consider the challenges and potential solutions associated with the future development of this field.
The compartmentalization of chemo-and enzymatic reactions is an elegant strategy for one-pot synthesis while avoiding reaction incompatibility issues. However, chemoenzymatic compartments developed to date are limited to complicated preparation. Herein, a simple, catalytically active polymer that stabilizes diverse types of emulsions for the encapsulation of active enzymes is presented. This design combines two distinct catalysts for cascade reaction while creating separate microenvironments with a large interfacial area for high reactivity. Moreover, the system is developed for solvent-free reactions, benefiting the "green" synthesis. www.chemcatchem.org
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.