By trapping sediment in reservoirs, dams interrupt the continuity of sediment transport through rivers, resulting in loss of reservoir storage and reduced usable life, and depriving downstream reaches of sediments essential for channel form and aquatic habitats. With the acceleration of new dam construction globally, these impacts are increasingly widespread. There are proven techniques to pass sediment through or around reservoirs, to preserve reservoir capacity and to minimize downstream impacts, but they are not applied in many situations where they would be effective. This paper summarizes collective experience from five continents in managing reservoir sediments and mitigating downstream sediment starvation. Where geometry is favorable it is often possible to bypass sediment around the reservoir, which avoids reservoir sedimentation and supplies sediment to downstream reaches with rates and timing similar to pre-dam conditions. Sluicing (or drawdown routing) permits sediment to be transported through the reservoir rapidly to avoid sedimentation during high flows; it requires relatively large capacity outlets. Drawdown flushing involves scouring and re-suspending sediment deposited in the reservoir and transporting it downstream through low-level gates in the dam; it works best in narrow reservoirs with steep longitudinal gradients and with flow velocities maintained above the threshold to transport sediment. Turbidity currents can often be vented through the dam, with the advantage that the reservoir need not be drawn down to pass sediment. In planning dams, we recommend that these sediment management approaches be utilized where possible to sustain reservoir capacity and minimize environmental impacts of dams.
Wind energy, as a vital renewable energy source, also plays a significant role in reducing carbon emissions and mitigating climate change. It is therefore of utmost necessity to evaluate ocean wind energy resources for electricity generation and environmental management. Ocean wind distribution around the globe can be obtained from satellite observations to compensate for limited in situ measurements. However, previous studies have largely ignored uncertainties in ocean wind energy resources assessment with multiple satellite data. It is against this background that the current study compares mean wind speeds (MWS) and wind power densities (WPD) retrieved from scatterometers (QuikSCAT, ASCAT) and radiometers (WindSAT) and their different combinations with National Data Buoy Center (NDBC) buoy measurements at heights of 10 m and 100 m (wind turbine hub height) above sea level. Our results show an improvement in the accuracy of wind resources estimation with the use of multiple satellite observations. This has implications for the acquisition of reliable data on ocean wind energy in support of management policies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.