MicroRNA-93 (miR-93) is involved in several carcinoma progressions. It has been reported that miR-93 acts as a promoter or suppressor in different tumors. However, till now, the role of miR-93 in colon cancer is unclear. Herein, we have found that expression of miR-93 was lower in human colon cancer tissue and colorectal carcinoma cell lines compared with normal colon mucosa. Forced expression of miR-93 in colon cancer cells inhibits colon cancer invasion, migration, and proliferation. Furthermore, miR-93 may downregulate the Wnt/β-catenin pathway, which was confirmed by measuring the expression level of the β-catenin, axin, c-Myc, and cyclin-D1 in this pathway. Mothers against decapentaplegic homolog 7 (Smad7), as an essential molecular protein for nuclear accumulation of β-catenin in the canonical Wnt signaling pathway, is predicted as a putative target gene of miR-93 by the silico method and demonstrated that it may be suppressed by targeting its 3'UTR. These findings showed that miR-93 suppresses colorectal cancer development via downregulating Wnt/β-catenin, at least in part, by targeting Smad7. This study revealed that miR-93 is an important negative regulator in colon cancer and suggested that miR-93 may serve as a novel therapeutic agent that offers benefits for colon cancer treatment.
Summary
Hypoxia is serving crucial roles in cancers. This study aims to comprehensively analyze the molecular features and clinical relevance of a well-defined hypoxia-associated signature in pan-cancer using multi-omics data. Data were acquired from TCGA, CCLE, GDSC, and GEO. RNA expression pattern, copy number variation (CNV), methylation, and mutation of the signature were analyzed. The majority of the 15 genes were upregulated in cancer tissues compared with normal tissue, and RNA expression was negatively associated with methylation level. CNV occurred in almost all the cancers, whereas mutation frequency was low across different cancer types. The signature was also closely related to cancer hallmarks and cancer-related metabolism pathways. NDRG1 was upregulated in kidney cancer tissues as indicated by immunohistochemistry. Besides, most of the 15 genes were risk factors for patients' overall survival. Our results provide a valuable resource that will guide both mechanistic and therapeutic analyses of the hypoxia signature in cancers.
MicroRNAs (miRNAs) are deregulated in a number of cancers including colorectal cancer. MiR-30c belongs to miR-30 family, and is involved in a variety of malignant diseases. In this study, we detected the expression of miR-30c in colon cancer cell lines and clinical colon cancer specimens. MiR-30c was shown to be dramatically down-regulated both in cell lines and cancer tissues. Additionally, miR-30c could inhibit cancer cell growth, migration and invasion in vitro. Consistently, stable over-expression of miR-30c inhibited the growth and lung metastasis of colon cancer cell xenografts in vivo. Furthermore, bioinformatics algorithm and luciferase reporter assay indicated ADAM19 as a direct target of miR-30c. Of interest, further experiments demonstrated that inhibition of ADAM19 by miR-30c partially mediated the anti-tumor effect of miR-30c. Overall, our study provides the new insight that miR-30c inhibited colon cancer cells via targeting ADAM19. Thus, miR-30c might serve as a promising therapeutic strategy for colon cancer treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.