This study introduces a challenge faced by CNN in the task of traffic sign detection: how to achieve robustness to distributional shift. At present, all kinds of CNN models rely on strong data augmentation methods to enrich samples and achieve robustness, such as Mosaic and Mixup. In this study, we note that these methods do not have similar effects on combating noise. We explore the performance of augmentation strategies against disturbance in different frequency bands and provide understanding from the Fourier analysis perspective. This understanding can provide a guidance for selecting data augmentation strategies for different detection tasks and benchmark datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.