Inflammation and apoptosis play important roles in the initiation and progression of acute lung injury (ALI). Our previous study has shown that progranulin (PGRN) exerts lung protective effects during LPS‐induced ALI. Here, we have investigated the potential roles of PGRN‐targeting microRNAs (miRNAs) in regulating inflammation and apoptosis in ALI and have highlighted the important role of PGRN. LPS‐induced lung injury and the protective roles of PGRN in ALI were first confirmed. The function of miR‐34b‐5p in ALI was determined by transfection of a miR‐34b‐5p mimic or inhibitor in intro and in vivo. The PGRN level gradually increased and subsequently significantly decreased, reaching its lowest value by 24 hr; PGRN was still elevated compared to the control. The change was accompanied by a release of inflammatory mediators and accumulation of inflammatory cells in the lungs. Using bioinformatics analysis and RT‐PCR, we demonstrated that, among 12 putative miRNAs, the kinetics of the miR‐34b‐5p levels were closely associated with PGRN expression in the lung homogenates. The gain‐ and loss‐of‐function analysis, dual‐luciferase reporter assays, and rescue experiments confirmed that PGRN was the functional target of miR‐34b‐5p. Intravenous injection of miR‐34b‐5p antagomir in vivo significantly inhibited miR‐34b‐5p up‐regulation, reduced inflammatory cytokine release, decreased alveolar epithelial cell apoptosis, attenuated lung inflammation, and improved survival by targeting PGRN during ALI. miR‐34b‐5p knockdown attenuates lung inflammation and apoptosis in an LPS‐induced ALI mouse model by targeting PGRN. This study shows that miR‐34b‐5p and PGRN may be potential targets for ALI treatments.
Long noncoding RNAs participate in the progression and initiation of non-small cell lung cancer (NSCLC), although the mechanism remains unknown. The lncRNA identified as small nucleolar RNA host gene 1 ( SNHG1) is a novel lncRNA that is increased in multiple human cancers; however, the regulatory mechanism requires further investigation. In this study, we discovered that SNHG1 was markedly up-regulated in NSCLC tissues and cells and that SNHG1 silencing decreased tumor volumes. Moreover, we explored its regulatory mechanism and found that SNHG1 directly bound to microRNA (miRNA)-145-5p, isolating miR-145-5p from its target gene MTDH. Inhibition of SNHG1 suppressed NSCLC cell viability, proliferation, migration, and invasion in vitro, but its effect was rescued by miR-145-5p inhibition. These results demonstrate that SNHG1 contributes to NSCLC progression by modulating the miR-145-5p/ MTDH axis, and it could potentially be a therapeutic target as well as a diagnostic marker.-Lu, Q., Shan, S., Li, Y., Zhu, D., Jin, W., Ren, T. Long noncoding RNA SNHG1 promotes non-small cell lung cancer progression by up-regulating MTDH via sponging miR-145-5p.
Long non‐coding RNAs (lncRNAs) have emerged as new and important regulators of pathological processes including tumour development. In this study, we demonstrated that differentiation antagonizing non‐protein coding RNA (DANCR) was up‐regulated in lung adenocarcinoma (ADC) and that the knockdown of DANCR inhibited tumour cell proliferation, migration and invasion and restored cell apoptosis rescued; cotransfection with a miR‐496 inhibitor reversed these effects. Luciferase reporter assays showed that miR‐496 directly modulated DANCR; additionally, we used RNA‐binding protein immunoprecipitation (RIP) and RNA pull‐down assays to further confirm that the suppression of DANCR by miR‐496 was RISC‐dependent. Our study also indicated that mTOR was a target of miR‐496 and that DANCR could modulate the expression levels of mTOR by working as a competing endogenous RNA (ceRNA). Furthermore, the knockdown of DANCR reduced tumour volumes in vivo compared with those of the control group. In conclusion, this study showed that DANCR might be an oncogenic lncRNA that regulates mTOR expression through directly binding to miR‐496. DANCR may be regarded as a biomarker or therapeutic target for ADC.
Idiopathic pulmonary fibrosis (IPF) is characterized by lung fibroblasts accumulation and extracellular matrix (ECM) deposition. Recently, long-noncoding RNAs (lncRNAs) have emerged as critical regulators and prognostic markers in several diseases including IPF. In the present study, we found that the expression of H19 was significantly increased in transforming growth factor-β (TGF-β)-induced fibroblast proliferation and bleomycin-(BLM) induced lung fibrosis (p < 0.05). We further demonstrated that H19 was a direct target of miR-196a and was associated with COL1A1 expression by sponging miR-196a. Moreover, downregulation of H19 alleviated fibroblast activation and lung fibrosis, and this effect was blocked by a miR-196a inhibitor. In conclusion, our results suggest that lncRNA H19 has a promotive effect on BLM-induced IPF, and it functions as a molecular sponge of miR-196a, which provides a novel therapeutic target for IPF.
BackgroundMicroRNAs (miRNAs) have been reported to play crucial roles in multiple cancers including non-small cell lung cancer (NSCLC). Here, we investigated the role of miR-145 and miR-497 in TGF-β-induced epithelial–mesenchymal transition (EMT) process of NSCLC.MethodsWe performed quantitative real time PCR (qRT-PCR) to detect the expression level of miR-145 and miR-497 in NSCLC cell lines. Then in the presence/absence of TGF-β, we transfected miRNA mimics or inhibitor into A549 and H1299 cells and investigated the role of miR-145 and miR-497 in cell migration and invasion using transwell and wound-healing assay. The regulation role of miR-145 and miR-497 on Metadherin (MTDH) was determined by luciferase assay. The expression level of MTDH and EMT markers E-cadherin and vimentin were detected on mRNA and protein level.ResultsIn our study, our results showed that miR-145 and miR-497 were downregulated in NSCLC cell lines. Overexpression of miR-145 and miR-497 inhibited TGF-β-induced EMT and suppressed cancer cell migration and invasion, while the opposite results were observed in cells transfected with miR-145 or miR-497 inhibitor. Moreover, the luciferase assay confirmed that miR-145 and miR-497 attenuated MTDH expression by directly binding 3′-UTR of MTDH mRNA and exert the tumor-suppression role.ConclusionsOverall, we demonstrated that miR-145 and miR-497 functioned as EMT-suppressor in NSCLC by targeting MTDH, provided new evidence that miR-145 and miR-497 as potential therapeutic targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.