Myeloid-derived suppressor cells (MDSCs) often expand during cancer or chronic inflammation and dampen immune responses. However, mechanisms underlying their capacity to escape intrinsic apoptosis in the inflammatory environment are still largely unknown. In this study, we investigated this in mouse tumor models with MDSC accumulation. Spontaneous rejection of tumors implanted into mice deficient for the small Ca2+-binding protein S100A4 (S100A4−/−) was accompanied by low numbers of peripheral MDSCs. This was independent of S100A4 expression on tumor cells. In contrast, MDSCs from S100A4−/− tumor-bearing mice showed a diminished resistance to the induction of intrinsic apoptosis. Further studies demonstrated that S100A4 protects MDSCs from apoptosis through toll-like receptor-4/extracellular signal-regulated kinase-dependent caspase-9 inhibition. The finding that S100A4 is critical for MDSC survival in inflammatory environments might have important implications for the clinical treatment of cancer or inflammation-related diseases.
A process for the utilization of wasted silica fume is proposed in this work. Silicon carbide (SiC) whiskers several tens of micrometers in length and with a bamboo‐like morphology have been successfully synthesized by a carbothermal reduction process using purified silica fume as the silicon source. The morphology and structure of SiC whiskers were investigated by X‐ray diffraction, Raman spectroscopy, scanning electron microscopy, and high‐resolution transmission electron microscopy. Studies found that the as‐synthesized whiskers were grown as single‐crystalline β‐SiC along the (111) growth direction. The whiskers consisted of hexagonal stems randomly decorated with larger‐diameter knots along their whole length. On the basis of the characterization results, a vapor–solid process was discussed as a possible growth mechanism of the β‐SiC whiskers.
A tandem ring-closing reaction was developed for the synthesis of 9-arylfluorenes and their derivatives. The reaction is metal-free, straightforward and efficient under warm conditions and more than 99% yield is obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.