ForewordThe study of the fundamental structure of nuclear matter is a central thrust of physics research in the United States. As indicated in Frontiers of Nuclear Science, the 2007 Nuclear Science Advisory Committee long range plan, consideration of a future Electron-Ion Collider (EIC) is a priority and will likely be a significant focus of discussion at the next long range plan. We are therefore pleased to have supported the ten week program in fall 2010 at the Institute of Nuclear Theory which examined at length the science case for the EIC. This program was a major effort; it attracted the maximum allowable attendance over ten weeks.This report summarizes the current understanding of the physics and articulates important open questions that can be addressed by an EIC. It converges towards a set of "golden" experiments that illustrate both the science reach and the technical demands on such a facility, and thereby establishes a firm ground from which to launch the next phase in preparation for the upcoming long range plan discussions. We thank all the participants in this productive program. In particular, we would like to acknowledge the leadership and dedication of the five co-organizers of the program who are also the co-editors of this report.David Kaplan, Director, National Institute for Nuclear Theory Hugh Montgomery, Director, Thomas Jefferson National Accelerator Facility Steven Vigdor, Associate Lab Director, Brookhaven National Laboratory iii Preface This volume is based on a ten-week program on "Gluons and the quark sea at high energies", which took place at the Institute for Nuclear Theory (INT) in Seattle from September 13 to November 19, 2010. The principal aim of the program was to develop and sharpen the science case for an Electron-Ion Collider (EIC), a facility that will be able to collide electrons and positrons with polarized protons and with light to heavy nuclei at high energies, offering unprecedented possibilities for in-depth studies of quantum chromodynamics. Guiding questions were• What are the crucial science issues?• How do they fit within the overall goals for nuclear physics?• Why can't they be addressed adequately at existing facilities?• Will they still be interesting in the 2020's, when a suitable facility might be realized?The program started with a five-day workshop on "Perturbative and Non-Perturbative Aspects of QCD at Collider Energies", which was followed by eight weeks of regular program and a concluding four-day workshop on "The Science Case for an EIC".More than 120 theorists and experimentalists took part in the program over ten weeks. It was only possible to smoothly accommodate such a large number of participants because of the extraordinary efforts of the INT staff, to whom we extend our warm thanks and appreciation. We thank the INT Director, David Kaplan, for his strong support of the program and for covering a significant portion of the costs for printing this volume. We gratefully acknowledge additional financial support provided by BNL and JLab.The program w...
We report on the pulse-to-pulse energy distribution and longitude-resolved modulation properties of PSR J1631+1252 discovered by the Five-hundred-meter Aperture Spherical radio Telescope. Our analysis made use of the data acquired at 1250 MHz from the follow-up timing observations that lasted over a year. PSR J1631+1252 has a rotational period of ∼0.310 s, and a dispersion measure of ∼32.73 pc cm−3. The energy distribution is well described by a lognormal distribution, the parameters of which do not vary with time. We show that large modulation occurs across the bridge emission of the pulse profile, with sporadic bright bursts at the leading emission region. The fluctuation spectral analysis reveals the existence of subpulse drifting in the leading component with vertical spacing between the drift bands of 3.28 ± 0.08 pulse periods between consecutive drift bands. Possible physical mechanisms for subpulse drifting are discussed.
The properties of the young pulsars and their relations to the supernova remnants (SNRs) have been the interesting topics. At present, 383 SNRs in the Milky Way galaxy have been published, which are associated with 64 radio pulsars and 46 pulsars with high energy emissions. However, we noticed that 630 young radio pulsars with the spin periods of less than half a second have been not yet observed the SNRs surrounding or nearby them, which arises a question of that could the two types of young radio pulsars with/without SNRs hold the distinctive characteristics? Here, we employ the statistical tests on the two groups of young radio pulsars with (52) and without (630) SNRs to reveal if they share the different origins. Kolmogorov-Smirnov (K-S) and Mann-Whitney-Wilcoxon (M-W-W) tests indicate that the two samples have the different distributions with parameters of spin period (P), derivative of spin period ($\dot{P}$), surface magnetic field strength (B) and energy loss rate ($\dot{E}$). Meanwhile, the cumulative number ratio between the pulsars with and without SNRs at the different spindown ages decreases significantly after $\rm 10-20\, Kyr$. So we propose that the existence of the two types of supernovae (SNe), corresponding to their SNR lifetimes, which can be roughly ascribed to the low-energy and high-energy SNe. Furthermore, the low-energy SNe may be formed from the $\rm 8-12\, M_{\odot }$ progenitor, e.g., possibly experiencing the electron capture, while the main sequence stars of $\rm 12-25\, M_{\odot }$ may produce the high-energy SNe probably by the iron core collapse.
We report the phase-connected timing ephemeris, polarization pulse profiles, Faraday rotation measurements, and Rotating-Vector-Model (RVM) fitting results of twelve millisecond pulsars (MSPs) discovered with the Five-hundred-meter Aperture Spherical radio Telescope (FAST) in the Commensal radio Astronomy FAST survey (CRAFTS). The timing campaigns were carried out with FAST and Arecibo over three years. Eleven of the twelve pulsars are in neutron star - white dwarf binary systems, with orbital periods between 2.4 and 100 d. Ten of them have spin periods, companion masses, and orbital eccentricities that are consistent with the theoretical expectations for MSP - Helium white dwarf (He WD) systems. The last binary pulsar (PSR J1912−0952) has a significantly smaller spin frequency and a smaller companion mass, the latter could be caused by a low orbital inclination for the system. Its orbital period of 29 days is well within the range of orbital periods where some MSP - He WD systems have shown anomalous eccentricities, however, the eccentricity of PSR J1912−0952 is typical of what one finds for the remaining MSP - He WD systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.