Heterogeneous palladium catalysts, which are supported on ordered mesoporous silica-carbon nanocomposites, have been applied in water-mediated coupling reactions of chlorobenzene without assistance of any phase-transfer catalysts. Characterization by XRD, TEM, N(2) sorption, FT-IR, TG, XPS, and H(2) chemisorption techniques reveals the highly ordered mesostructure, high surface areas (approximately 345 m(2)/g), large pore volumes (approximately 0.46 cm(3)/g), uniform mesopore sizes (approximately 6.3 nm), hybrid silicate and carbonaceous compositions, and a high dispersion of palladium nanoparticles (about 3 nm) in the mesopores. The catalyst exhibits a high yield for trans-stilbene (approximately 60%) in the Heck coupling reaction of chlorobenzene and styrene at 100 degrees C and for biphenyl (46%) in the Ullmann coupling reaction of chlorobenzene at 30 degrees C, using water as a solvent. When substituted aryl chlorides (hydroxyl, methoxyl, and methyl) are involved in the Ullmann reaction, the yields of symmetrical substituted biphenyl are also higher than 44% (this value reaches 86% for the coupling reaction of 4-chlorophenol) at a low temperature of 30 degrees C. This heterogeneous catalyst is stable, which shows negligible metal leaching, and can be reused more than 20 times. For comparison, the catalytic activities for Pd catalysts supported on pure mesoporous polymeric, carbonaceous, and silicate frameworks are also investigated. The results clearly indicate that the pore wall nature shows great influence on the dispersion of metallic Pd species and, in turn, the catalytic performance.
A coordination-assisted synthetic approach is reported here for the synthesis of highly active and stable gold nanoparticle catalysts in ordered mesoporous carbon materials using triblock copolymer F127 as a structure-directing agent, thiol-containing silane as a coordination agent, HAuCl4 as a gold source, and phenolic resin as a carbon source. Upon carbonization, the gold precursor becomes reduced to form monodispersed Au nanoparticles of ca. 9.0 nm, which are entrapped or confined by the "rigid" mesoporous carbonaceous framework. Nanoparticle aggregation is inhibited even at a high temperature of 600 °C. After removal of the silica component, the materials possess the ordered mesostructure, high surface area (~1800 m(2)/g), large pore volume (~1.19 cm(3)/g), and uniform bimodal mesopore size (<2.0 and 4.0 nm). The monodispersed gold nanoparticles are highly exposed because of the interpenetrated bimodal pores in the carbon framework, which exhibit excellent catalytic performance. A completely selective conversion of benzyl alcohol in water to benzoic acid can be achieved at 90 °C and 1 MPa oxygen. Benzyl alcohol can also be quantitatively converted to benzoic acid at 60 °C even under an atmospheric pressure, showing great advantages in green chemistry. The catalysts are stable, poison resistant, and reusable with little activity loss due to metal leaching. The silane coupling agent played several functions in this approach: (1) coordinating with gold species by the thiol group to benefit formation of monodispersed Au nanoparticles; (2) reacting with phenolic resins by silanol groups to form relatively "rigid" composite framework; (3) pore-forming agent to generate secondary pores in carbon pore walls, which lead to higher surface area, larger pore volumes, and higher accessibility to to the gold nanoparticles. Complete removal of the silica component proves to have little effect on the catalytic performance of entrapped Au nanoparticles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.