The application of advanced sequencing technologies and the rapid growth of various sequence data have led to increasing interest in DNA sequence assembly. However, repeats and polymorphism occur frequently in genomes, and each of these has different impacts on assembly. Further, many new applications for sequencing, such as metagenomics regarding multiple species, have emerged in recent years. These not only give rise to higher complexity but also prevent short-read assembly in an efficient way. This article reviews the theoretical foundations that underlie current mapping-based assembly and de novo-based assembly, and highlights the key issues and feasible solutions that need to be considered. It focuses on how individual processes, such as optimal k-mer determination and error correction in assembly, rely on intelligent strategies or high-performance computation. We also survey primary algorithms/software and offer a discussion on the emerging challenges in assembly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.