With the increasing complexity of application situations in multi-core processing systems, how to assure task execution reliability has become a focus of scheduling algorithm research in recent years. Most fault-tolerant algorithms achieve hard reliability requirements through task redundancy, which increases energy consumption and contradicts the concept of sustainable development. In this paper, we propose a new algorithm called HDFE (Heterogeneous-Dag-task-fault-tolerance-energy-efficiency algorithm) that combines DVFS technology and task replication technology to solve the scheduling problem of DAG applications concerning energy-saving and hard reliability requirements in heterogeneous multi-core processor systems. Our algorithm is divided into three phases: the priority calculation phase, the task replication phase, and the task assignment phase. The HDFE algorithm achieved energy savings while meeting hard reliability requirements for applications, which was based on the interrelationship between reliability and energy consumption in filtering task replicas. In the experimental part of this paper, we designed four comparison experiments between the EFSRG algorithm, the HRRM algorithm, and the HDFE algorithm. The experimental results showed that the energy consumption of task scheduling using the HDFE algorithm is lower than other algorithms under different scales, thus achieving energy savings and complying with the concept of sustainable development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.