Insect pests negatively affect crop quality and yield; identifying new methods to protect crops against insects therefore has important agricultural applications. Our analysis of transgenic Arabidopsis thaliana plants showed that overexpression of PENTACYCLIC TRITERPENE SYNTHASE 1 (PEN1), encoding the key biosynthetic enzyme for the natural plant product (3E)-4,8-dimethyl-1,3,7-nonatriene (DMNT), led to significant resistance against a major insect pest, Plustella xylostella. DMNT treatment severely damaged the peritrophic matrix (PM), a physical barrier isolating food and pathogens from the midgut wall cells. DMNT repressed the expression of PxMucin in midgut cells and knocking down PxMucin resulted in PM rupture and P. xylostella death. A 16S RNA survey revealed that DMNT significantly disrupted midgut microbiota populations and that midgut microbes were essential for DMNT-induced killing. Therefore, we propose that the midgut microbiota assists DMNT in killing P. xylostella. These findings may provide a novel approach for plant protection against P. xylostella.
Background/Aims: Circulating long non coding RNAs (lncRNAs) have emerged recently as major players in tumor biology and may be used for cancer diagnosis, prognosis, and as potential therapeutic targets. We explored circulating lncRNA as a predictor for the tumorigenesis of non-small-cell lung cancer (NSCLC). Methods: In this study, we applied a lncRNA microarray to screen for a potential biomarker for NSCLC, utilizing RT-PCR (ABI 7900HT). A multi-stage validation and risk score formula detection analysis was used. Results: We discovered that three lncRNAs (RP11-397D12.4, AC007403.1, and ERICH1-AS1) were up regulated in NSCLC, compared with cancer-free controls, with the merged area under the curve in the training and validation sets of 0.986 and 0.861. Furthermore, the positive predictive value and negative predictive value of the three merged factors were 0.72 and 0.87. We confirmed stable detection of the three lncRNAs by three cycles of freezing and thawing. Conclusions: RP11-397D12.4, AC007403.1, and ERICH1-AS1 may be potential biomarkers for predicting the tumorigenesis of NSCLC in the future.
Development of efficient cathode catalysts is crucial
for achieving
high-performance rechargeable lithium–oxygen batteries. Herein,
a simple one-step electrospun method was applied to obtain a silver-modified
perovskite La0.9FeO3−δ (Ag@LFO)
as an efficient cathode catalyst. The synthesized catalyst has two
characteristics: first, the doping of Ag led to a tailored electronic
structure including the generation of Fe4+; second, the
in situ grown Ag exhibits a stronger interaction with perovskite.
These two advantages result in high oxygen adsorbability and increased
percentage of highly active oxygen species. Therefore, film-like Li2O2 was observed during discharge on the Ag@LFO
cathode, which is beneficial for decomposition during recharge, whereas
Li2O2 generated on the LFO cathode was largely
toroidal. Density functional theory calculations were used to discuss
the Li2O2 growth mechanism. As a result, compared
to La0.9FeO3−δ and post-loading
silver-decorated La0.9FeO3−δ (Ag/LFO),
Ag@LFO exhibits lower overpotential, improved rate-capability, higher
discharge specific capacity, and especially promoted cycling performance
that is triple that of LFO.
Thus our results provide evidence that miR-497 might function as a metastasis suppressor in CRC. Targeting miR-497 may provide a strategy for blocking its metastasis.
Vinyl chloride, the monomer of polyvinyl chloride (PVC), is industrially synthesized via acetylene hydrochlorination. Thereby, easy to sublimate but toxic mercury chloride catalysts are widely used. It is imperative to find environmentally friendly non-mercury catalysts to promote the green production of PVC. Low-cost copper-based catalysts are promising candidates. In this study, phosphorus-doped Cu-based catalysts are prepared. It is shown that the type of phosphorus configuration and the distribution on the surface of the carrier can be adjusted by changing the calcination temperature. Among the different phosphorus species, the formed P-C bond plays a key role. The coordination structure formed by the interaction between P-C bonds and atomically dispersed Cu2+ species results in effective and stable active sites. Insights on how P-C bonds activate the substrate may provide ideas for the design and optimization of phosphorus-doped catalysts for acetylene hydrochlorination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.