The peroxidation of arachidonic acid (AA) catalyzed by cyclooxygenase (COX) is a well known free radical-mediated process that forms many bioactive products. Due to a lack of appropriate methodologies, however, no comprehensive structural evidence has been found previously for the formation of COX-mediated and AA-derived free radicals. Here we have used a combination of LC/ESR and LC/MS with a spin trap, α-[4-pyridyl-1-oxide]-N-tert-butyl nitrone (POBN), to characterize the carbon-centered radicals formed from COX-catalyzed AA peroxidation in vitro, including cellular peroxidation in human prostate cancer cells (PC-3). Three types of radicals with numerous isomers were trapped by POBN as ESR-active peaks and MS-active ions of m/z 296, m/z 448, and m/z 548, all stemming from PGF2-type alkoxyl radicals. One of these was a novel radical centered on the carbon-carbon double bond nearest the PGF ring, caused by an unusual β-scission of PGF2-type alkoxyl radicals. The complementary non-radical product was 1-hexanol, another novel β-scission product, instead of the more common aldehyde. The characterization of these novel products formed from in vitro peroxidation provides a new mechanistic insight into COX-catalyzed AA peroxidation in cancer biology.
Abstractγ-Linolenic acid (GLA) has been reported as a potential anti-cancer and anti-inflammatory agent and has received substantial attention in cancer care research. One of the many proposed mechanisms for GLA biological activity is free radical-mediated lipid peroxidation. However, no direct evidence has been obtained for the formation of GLA-derived radicals. In this study, a combination of LC/ ESR and LC/MS was used with α-[4-pyridyl-1-oxide]-N-tert-butyl nitrone (POBN) to profile the carbon-centred radicals that are generated in lipoxygenase-catalysed GLA peroxidation. A total of four classes of GLA-derived radicals were characterized including GLA-alkyl, epoxyallylic, dihydroxyallylic radicals and a variety of carbon-centred radicals stemming from the β-scissions of GLA-alkoxyl radicals. By means of an internal standard in LC/MS, one also quantified each radical adduct in all its redox forms, including an ESR-active form and two ESR-silent forms. The results provided a good starting point for ongoing research in defining the possible biological effects of radicals generated from GLA peroxidation.
Increased evidence from animal and in vitro cellular research indicates that the metabolism of eicosapentaenoic acid (EPA) can inhibit carcinogenesis in many cancers. Free radical-mediated peroxidation is one of many possible mechanisms to which EPA's anti-cancer activity has been attributed. However, no direct evidence has been obtained for the formation of any EPA-derived radicals. In this study, a combination of LC/ESR and LC/MS was used with α-[4-pyridyl 1-oxide]-N-tert-butyl nitrone to identify the carbon-centred radicals that are formed in lipoxygenasecatalysed EPA peroxidation. Of the numerous EPA-derived radicals observed, the major products were those stemming from β-scission of 5-, 15-and 18-EPA-alkoxyl radicals. By means of an internal standard in LC/MS, this study also quantified each radical adduct in all its redox forms, including an ESR-active form and two ESR-silent forms. The comprehensive profile of EPA's radical formation provides a starting point for ongoing research in defining the biological effects of radicals generated from EPA peroxidation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.