According to the government of China, reported cases of pertussis have increased remarkably and are still increasing. To determine the genetic relatedness of Bordetella pertussis strains, we compared multilocus variable-number tandem-repeat analysis (MLVA) results for isolates from China with those from Western countries. Among 335 isolates from China, the most common virulence-associated genotype was ptxA1/ptxC1/ptxP1/prn1/fim2–1/fim3A/tcfA2, which was more frequent among isolates from northern than southern China. Isolates of this genotype were highly resistant to erythromycin. We identified 36 ptxP3 strains mainly harboring ptxA1 and prn2 (35/36); ptxP3 strains were sensitive to erythromycin and were less frequently from northern China. For all isolates, the sulfamethoxazole/trimethoprim MIC was low, indicating that this drug should be recommended for patients infected with erythromycin-resistant B. pertussis. MLVA of 150 clinical isolates identified 13 MLVA types, including 3 predominant types. Our results show that isolates circulating in China differ from those in Western countries.
Myeloid-derived suppressor cells (MDSCs) are well known for their capacity to suppress antitumor T-cell responses, but their effects on B-cell function and antibody production remain unclear. Here, we found that MDSCs that accumulated around the germinal center in the spleen of tumor-bearing mice co-located with B cells. In the presence of MDSCs, the antibody reaction to a surrogate antigen was significantly enhanced in mice, especially the immunoglobulin (Ig)A subtype. Co-culture with MDSCs promoted both proliferation and differentiation of B cells into IgA-producing plasma cells in vitro. Interestingly, the cross talk between MDSCs and B cells required cell-cell contact. MDSCs from tumor necrosis factor receptor (TNFR) 2 mice, but not from TNFR1 mice, failed to promote B-cell responses. Further investigation suggested that interleukin-10 and transforming growth factor-β1 were crucial for the MDSC-mediated promotion of IgA responses. These results demonstrate a novel mechanism of MDSC-mediated immune regulation during tumor growth.
The function of blood-brain barrier is often disrupted during the progression of multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE). However, the molecular mechanism of blood-brain barrier modulation during neuroinflammation remains unclear. Herein, we show that the expression of interferon-γ (IFNγ) receptor on endothelial cells (ECs) protected mice from the brain inflammation during EAE. IFNγ stabilized the integrity of the cerebral endothelium and prevented the infiltration of leukocytes into the brain. Further analysis revealed that IFNγ increased the expression of tight junction proteins zonula occludens protein 1 and occludin, as well as membranous distribution of claudin-5, in brain ECs. Silencing claudin-5 abolished the IFNγ-mediated improvement of EC integrity. Taken together, our results show that IFNγ, a pleiotropic proinflammatory cytokine, stabilizes blood-brain barrier integrity and, therefore, prevents brain inflammation during EAE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.