Photosynthesis sustains plant life on earth and is indispensable for plant growth and development. Factors such as unfavorable environmental conditions, stress regulatory networks, and plant biochemical processes limits the photosynthetic efficiency of plants and thereby threaten food security worldwide. Although numerous physiological approaches have been used to assess the performance of key photosynthetic components and their stress responses, though, these approaches are not extensive enough and do not favor strategic improvement of photosynthesis under abiotic stresses. The decline in photosynthetic capacity of plants due to these stresses is directly associated with reduction in yield. Therefore, a detailed information of the plant responses and better understanding of the photosynthetic machinery could help in developing new crop plants with higher yield even under stressed environments. Interestingly, cracking of signaling and metabolic pathways, identification of some key regulatory elements, characterization of potential genes, and phytohormone responses to abiotic factors have advanced our knowledge related to photosynthesis. However, our understanding of dynamic modulation of photosynthesis under dramatically fluctuating natural environments remains limited. Here, we provide a detailed overview of the research conducted on photosynthesis to date, and highlight the abiotic stress factors (heat, salinity, drought, high light, and heavy metal) that limit the performance of the photosynthetic machinery. Further, we reviewed the role of transcription factor genes and various enzymes involved in the process of photosynthesis under abiotic stresses. Finally, we discussed the recent progress in the field of biodegradable compounds, such as chitosan and humic acid, and the effect of melatonin (bio-stimulant) on photosynthetic activity. Based on our gathered researched data set, the logical concept of photosynthetic regulation under abiotic stresses along with improvement strategies will expand and surely accelerate the development of stress tolerance mechanisms, wider adaptability, higher survival rate, and yield potential of plant species.
ORCID IDs: 0000-0002-2122-9045 (P.H.); 0000-0001-9745-0582 (J.Y.).Arabidopsis (Arabidopsis thaliana) seedlings undergo photomorphogenesis in the light and etiolation in the dark. Light-activated photoreceptors transduce the light signals through a series of photomorphogenesis promoting or repressing factors to modulate many developmental processes in plants, such as photomorphogenesis and shade avoidance. CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1) is a conserved RING finger E3 ubiquitin ligase, which mediates degradation of several photomorphogenesis promoting factors, including ELONGATED HYPOCOTYL5 (HY5) and LONG HYPOCOTYL IN FAR-RED1 (HFR1), through a 26S proteasome-dependent pathway. PHYTOCHROME RAPIDLY REGULATED1 (PAR1) was first detected as an early repressed gene in both phytochrome A (phyA)-mediated far-red and phyB-mediated red signaling pathways, and subsequent studies showed that both PAR1 and PAR2 are negative factors of shade avoidance in Arabidopsis. However, the role of PAR1 and PAR2 in seedling deetiolation, and their relationships with other photomorphogenesis promoting and repressing factors are largely unknown. Here, we confirmed that both PAR1 and PAR2 redundantly enhance seedling deetiolation in multiple photoreceptor signaling pathways. Their transcript abundances are repressed by phyA, phyB, and cryptochrome1 under farred, red, and blue light conditions, respectively. Both PAR1 and PAR2 act downstream of COP1, and COP1 mediates the degradation of PAR1 and PAR2 through the 26S proteasome pathway. Both PAR1 and PAR2 act in a separate pathway from HY5 and HFR1 under different light conditions, except for sharing in the same pathway with HFR1 under far-red light. Together, our results substantiate that PAR1 and PAR2 are positive factors functioning in multiple photoreceptor signaling pathways during seedling deetiolation.
Proso and foxtail millets are widely cultivated due to their excellent resistance to biotic and abiotic stresses and high nutritional value. Starch is the most important component of millet kernels. Starches with different amylose contents have different physicochemical properties. In this study, starches in proso (non-waxy and waxy) and foxtail millets (non-waxy and waxy) were isolated and investigated. All the starch granules had regular polygonal round shapes and exhibited typical “Maltese crosses”. These four starches all showed bimodal size distribution. The waxy proso and foxtail millets had higher weight-average molar mass and branching degree and lower average chain length of amylopectin. These four starches all presented A-type crystallinity; however, the relative crystallinity of waxy proso and foxtail millets was higher. The two waxy millets had higher onset temperature, peak temperature, conclusion temperature, and gelatinization enthalpy. However, the two non-waxy millets had higher setback viscosity, peak time, and pasting temperature. The significantly different physicochemical properties of waxy and non-waxy millet starches resulted in their different functional properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.