In smart cities, the computing power and battery life of terminal devices (TDs) can be effectively enhanced by offloading tasks to nearby base stations (BSs) with richer resources. With the goal of TDs being fully served and achieving low-carbon energy savings for the system, this paper investigates task offloading in cloud-edge collaborative heterogeneous scenarios with multiple BSs and TDs. According to the proportional relationship between the energy and coverage radii of BSs, a complete coverage task offloading model with adjustable BS radii is proposed. The task offloading problem is formulated as an integer linear program with multidimensional resource constraints to minimize the sum of energy consumption of BS coverage, offloading tasks to BSs and the cloud data center (CC). Since this task offloading problem is NP-hard, two approximate algorithms with polynomial time complexity are designed based on the greedy strategy of seeking the most energy-effective disk and the primal–dual method of constructing primal feasible solutions according to dual feasible solutions. Experimental results show that both the greedy and primal–dual algorithms can achieve good approximation performance, but each of them has its own advantages due to different design principles. The former is superior in execution time and energy consumption, while the latter has advantages in balancing loads among BSs and alleviating core network bandwidth pressure.
The intensity of radio waves decays rapidly with increasing propagation distance, and an edge server’s antenna needs more power to form a larger signal coverage area. Therefore, the power of the edge server should be controlled to reduce energy consumption. In addition, edge servers with capacitated resources provide services for only a limited number of users to ensure the quality of service (QoS). We set the signal transmission power for the antenna of each edge server and formed a signal disk, ensuring that all users were covered by the edge server signal and minimizing the total power of the system. This scenario is a typical geometric set covering problem, and even simple cases without capacity limits are NP-hard problems. In this paper, we propose a primal–dual-based algorithm and obtain an m-approximation result. We compare our algorithm with two other algorithms through simulation experiments. The results show that our algorithm obtains a result close to the optimal value in polynomial time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.