In this paper, we present a hyper-Laplacian regularized method WHLR-MSC with a new weighted tensor nuclear norm for multi-view subspace clustering. Specifically, we firstly stack the subspace representation matrices of the different views into a tensor, which neatly captures the higher-order correlations between the different views. Secondly, in order to make all the singular values have different contributions in tensor nuclear norm based on tensor-Singular Value Decomposition (t-SVD), we use weighted tensor nuclear norm to constrain the constructed tensor, which can obtain the class discrimination information of the sample distribution more accurately. Third, from a geometric point of view, the data are usually sampled from a low-dimensional manifold embedded in a high-dimensional ambient space, the WHLR-MSC model uses hyper-Laplacian graph regularization to capture the local geometric structure of the data. An effective algorithm for solving the optimization problem of WHLR-MSC model is proposed. Extensive experiments on five benchmark image datasets show the effectiveness of our proposed WHLR-MSC method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.