We propose a novel approach to multi-fingered grasp planning leveraging learned deep neural network models. We train a convolutional neural network to predict grasp success as a function of both visual information of an object and grasp configuration. We can then formulate grasp planning as inferring the grasp configuration which maximizes the probability of grasp success. We efficiently perform this inference using a gradient-ascent optimization inside the neural network using the backpropagation algorithm. Our work is the first to directly plan high quality multifingered grasps in configuration space using a deep neural network without the need of an external planner. We validate our inference method performing both multifinger and two-finger grasps on real robots. Our experimental results show that our planning method outperforms existing planning methods for neural networks; while offering several other benefits including being data-efficient in learning and fast enough to be deployed in real robotic applications.
Different manipulation tasks require different types of grasps. For example, holding a heavy tool like a hammer requires a multi-fingered power grasp offering stability, while holding a pen to write requires a multi-fingered precision grasp to impart dexterity on the object. In this paper, we propose a probabilistic grasp planner that explicitly models grasp type for planning high-quality precision and power grasps in real-time. We take a learning approach in order to plan grasps of different types for previously unseen objects when only partial visual information is available. Our work demonstrates the first supervised learning approach to grasp planning that can explicitly plan both power and precision grasps for a given object. Additionally, we compare our learned grasp model with a model that does not encode type and show that modeling grasp type improves the success rate of generated grasps. Furthermore we show the benefit of learning a prior over grasp configurations to improve grasp inference with a learned classifier.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.