To address problems involving the poor matching ability of supply and demand information and outdated scheduling methods in agricultural machinery operation service, in this study, we proposed a harvester operation scheduling model and algorithm for an order-oriented multi-machine collaborative operation within a region. First, we analysed the order-oriented multi-machine collaborative operation within the region and the characteristics of agricultural machinery operation scheduling, examined the revenue of a mechanized harvesting operation and the components of each cost, and constructed a harvester operation scheduling model with the operation income as the optimization goal. Second, we proposed a simulated annealing genetic algorithm-based harvester operation scheduling algorithm and analysed the validity and stability of the algorithm through experimental simulations. The results showed that the proposed harvester operation scheduling model effectively integrated the operating cost, transfer cost, waiting time cost, and operation delay cost of the harvester, and the accuracy of the harvester operation scheduling model was improved; the harvester operation scheduling algorithm based on simulated annealing genetic algorithm (SAGA) was able to obtain a global near-optimal solution of high quality and stability with high computational efficiency.
When the outbreak of COVID-19 began, people could not go out. It was not allowed to provide agricultural machinery services in different places across regions to reduce the flow and gathering of people. Improvement of utilization efficiency of agricultural machinery resources is required through scientific scheduling of agricultural machinery. With seizing the farming season and stabilizing production as the goal, this paper studied the scientific scheduling of tractors within the scope of town and established agricultural machinery operation scheduling model with the minimization of total scheduling cost as the optimization objective. Factors such as farmland area, agricultural machinery, and farmland location information and operating time window are considered in this model to improve the accuracy of the agricultural machinery operation scheduling model. The characteristics of multiple scheduling algorithms are analyzed comprehensively. The scheduling requirements of agricultural machinery operation to ensure spring ploughing are combined to design the agricultural machinery scheduling algorithm based on the SA algorithm. With Hushu Street, Jiangning District, Nanjing City, as an example, a comparative experiment is conducted on the simulated annealing algorithm (SA) designed in this paper and the empirical algorithm and genetic algorithm (GA). The results suggest that the total cost of the scheduling scheme generated by the SA algorithm is 19,042.07 yuan lower than that by the empirical scheduling algorithm and 779.19 yuan lower than that by the genetic algorithm on average. Compared with the GA algorithm, the transfer distance, waiting cost, and delay cost of the SA algorithm are reduced by 11.6%, 100%, and 98.1% on average, indicating that the transfer distance of agricultural machinery in the scheduling scheme generated by the SA algorithm is shorter, so is the waiting and delay time. Meanwhile, it can effectively obtain the near-optimal solution that meets the time window constraint, with good convergence, stability, and adaptability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.