The influx of inflammatory cells to sites of injury is largely directed by signals from the epithelium, but how these cells form chemotactic gradients is not known. In matrilysin null mice, neutrophils remained confined in the interstitium of injured lungs and did not advance into the alveolar space. Impaired transepithelial migration was accompanied by a lack of both shed syndecan-1, a heparan sulfate proteoglycan, and KC, a CXC chemokine, in the alveolar fluid. KC was bound to shed syndecan-1, and it was not detected in the lavage of syndecan-1 null mice. In vitro, matrilysin cleaved syndecan-1 from the surface of cells. Thus, matrilysin-mediated shedding of syndecan-1/KC complexes from the mucosal surface directs and confines neutrophil influx to sites of injury.
Matrilysin (matrix metalloproteinase-7) is highly expressed in lungs of patients with pulmonary fibrosis and other conditions associated with airway and alveolar injury. Although matrilysin is required for closure of epithelial wounds ex vivo, the mechanism of its action in repair is unknown. We demonstrate that matrilysin mediates shedding of E-cadherin ectodomain from injured lung epithelium both in vitro and in vivo. In alveolar-like epithelial cells, transfection of activated matrilysin resulted in shedding of E-cadherin and accelerated cell migration. In vivo, matrilysin co-localized with E-cadherin at the basolateral surfaces of migrating tracheal epithelium, and the reorganization of cell-cell junctions seen in wild-type injured tissue was absent in matrilysin-null samples. E-cadherin ectodomain was shed into the bronchoalveolar lavage fluid of bleomycin-injured wild-type mice, but was not shed in matrilysin-null mice. These findings identify E-cadherin as a novel substrate for matrilysin and indicate that shedding of E-cadherin ectodomain is required for epithelial repair.
BackgroundLung injury promotes the expression of matrix metalloproteinase-7 (MMP7, matrilysin), which is required for neutrophil recruitment and re-epithelialization. MMP7 governs the lung inflammatory response through the shedding of syndecan-1. Because inflammation and repair are related events, we evaluated the role of syndecan-1 shedding in lung re-epithelialization.Methodology/Principal FindingEpithelial injury induced syndecan-1 shedding from wild-type epithelium but not from Mmp7−/− mice in vitro and in vivo. Moreover, cell migration and wound closure was enhanced by MMP7 shedding of syndecan-1. Additionally, we found that syndecan-1 augmented cell adhesion to collagen by controlling the affinity state of the α2β1 integrin.Conclusion/SignificanceMMP7 shedding of syndecan-1 facilitates wound closure by causing the α2β1 integrin to assume a less active conformation thereby removing restrictions to migration. MMP7 acts in the lungs to regulate inflammation and repair, and our data now show that both these functions are controlled through the shedding of syndecan-1.
Inhalation of asbestos fibers causes pulmonary inflammation and eventual pulmonary fibrosis (asbestosis). Although the underlying molecular events are poorly understood, protease/antiprotease and oxidant/antioxidant imbalances are believed to contribute to the disease. Implicated in other forms of pulmonary fibrosis, the matrix metalloproteinases (MMPs) have not been examined in asbestosis. We therefore hypothesized that MMPs play a pathogenic role in asbestosis development. Wild-type C57BL/6 mice were intratracheally instilled with 0.1 mg crocidolite asbestos, causing an inflammatory response at 1 d and a developing fibrotic response at 7, 14, and 28 d. Gelatin zymography demonstrated an increase in MMP-9 (gelatinase B) during the inflammatory phase, while MMP-2 (gelatinase A) was profoundly increased in the fibrotic phase. Immunohistochemistry revealed MMP-9 in and around bronchiolar and airspace neutrophils that were often associated with visible asbestos fibers. MMP-2 was found in fibrotic regions at 7, 14, and 28 d. No increases in RNA levels of MMP-2, MMP-9, or MMP-8 were found, but levels of MMP-7, MMP-12, and MMP-13 RNA did increase at 14 d. The MMP inhibitors, TIMP-1 and TIMP-2, were also increased at 7-28 d after asbestos exposure. To confirm the importance of MMP activity in disease progression, mice exposed to asbestos were given daily injections of the MMP inhibitor, GM6001. MMP inhibition reduced inflammation and fibrosis in asbestos-treated mice. Collectively, these data suggest that MMPs contribute to the pathogenesis of asbestosis through effects on inflammation and fibrosis development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.