In the study of hybrid quantum dot light-emitting diodes (QLEDs), even for state-of-the-art achievement, there still exists a long-standing charge balance problem, i.e., sufficient electron injection versus inefficient hole injection due to the large valence band offset of quantum dots (QDs) with respect to the adjacent carrier transport layer. Here the dedicated design and synthesis of high luminescence Zn 1−x Cd x Se/ZnSe/ZnS QDs is reported by precisely controlled shell growth, which have matched energy level with the adjacent hole transport layer in QLEDs. As emitters, such Zn 1−x Cd x Se-based QLEDs exhibit peak external quantum efficiencies (EQE) of up to 30.9%, maximum brightness of over 334 000 cd m −2 , very low efficiency roll-off at high current density (EQE ≈25% @ current density of 150 mA cm −2 ), and operational lifetime extended to ≈1 800 000 h at 100 cd m −2 . These extraordinary performances make this work the best among all solution-processed QLEDs reported in literature so far by achieving simultaneously high luminescence and balanced charge injection. These major advances are attributed to the combination of an intermediate ZnSe layer with an ultrathin ZnS outer layer as the shell materials and surface modification with 2-ethylhexane-1-thiol, which can dramatically improve hole injection efficiency and thus lead to more balanced charge injection.
Indium phosphide (InP) core/shell quantum dots (QDs) without intrinsic toxicity have shown great potential to replace the widely applied cadmium‐containing QDs in next‐generation commercial display and lighting applications. However, it remains challenging to synthesize InP core/shell QDs with high quantum yields (QYs), uniform particle size, and simultaneously thicker shell thickness to reduce nonradiative Förster resonant energy transfer (FRET). Here, thick InP‐Based QLEDs shell InP/GaP/ZnS//ZnS core/shell QDs with high stability, high QY (≈70%), and large particle size (7.2 ± 1.3 nm) are successfully synthesized through extending the growth time of shell materials along with the timely replenishment of shelling precursor. The existence of GaP interface layer minimizes the lattice mismatch and reduces interfacial defects. While thick ZnS shell, which suppresses the FRET between closely packed QDs, ensures high PL QY and stability. The robustness of such properties is demonstrated by the fabrication of green electroluminescent LEDs based on InP core/shell QDs with the peak external quantum efficiency and current efficiency of 6.3% and 13.7 cd A−1, respectively, which are the most‐efficient InP‐based green quantum dot light‐emitting diodes (QLEDs) till now. This work provides an effective strategy to further improve heavy‐metal‐free QLED performance and moves a significant step toward the commercial application of InP‐based electroluminescent device.
In this paper, highly stable violet-blue emitting ZnSe/ZnS core/shell QDs have been synthesized by a novel "low temperature injection and high temperature growth" method. The resulting nearly monodisperse ZnSe/ZnS core/shell QDs exhibit excellent characteristics such as a high color saturation (typical spectral full width at half-maximum between 12 and 20 nm), good emission tunability in the violet-blue range of wavelengths from 400 to 455 nm, a high absolute PL quantum yield (up to 83%), and superior chemical and photochemical stability. By employing ZnSe/ZnS core/shell quantum dots (QDs) as emitters with a fully solution processable method, bright, efficient, and color-stable violet Cd-free quantum dot-based light-emitting diodes (QD-LEDs) with maximum luminance up to 2632 cd m(-2) and a peak EQE of 7.83% have been demonstrated successfully. Considering the factors of the photopic luminosity function, the brightness and efficiency results of such violet QD-LEDs not only represent a 12-fold increase in device efficiency and an extraordinary 100 times increase in luminance compared with previous Cd-free QD-LEDs but also can be much superior to the best performance (1.7%) of their Cd-based violet counterparts. These results demonstrate significant progress in short-wavelength QD-LEDs and shed light on the acceleration of commercial application of environmentally-friendly violet QD-based displays and lighting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.