The transfer process of chloride ion under the action of the convection-diffusion coupling was analyzed in order to predict the corrosion of reinforcement and the durability of structure more accurately. Considering the time-varying properties of diffusion coefficient and the space-time effect of the convection velocity, the differential equation for chloride ion transfer under the action of the convection-diffusion coupling was constructed. And then the chloride ion transfer model was validated by the existing experimental datum and the actual project datum. The results showed that when only diffusion was considered, the chlorine ion concentration increased with the time and decreased with the decay index of time. Under the action of the convection-diffusion coupling, at each point of coupling region, the chloride ion concentration first increased and then decreased and tended to stabilize, and the maximum appeared at the moment of convection velocity being 0; in the diffusion zone, the chloride ion concentration increased over time, and the chloride ion concentration of the same location increased with the depth of convection (in the later period), the velocity of convection (in the early period), and the chloride ion concentration of the surface.
Chloride ion penetration frequently leads to steel corrosion and reduces the durability of reinforced concrete. Although previous studies have investigated the chloride ion permeability of some fiber concrete, the chloride ion permeability of the basalt fiber reinforced concrete (BFRC) has not been widely investigated. Considering that BFRC may be subjected to various exposure environments, this paper focused on exploring the chloride ion permeability of BFRC under the coupling effect of elevated temperatures and compression. Results demonstrated that the chloride ion content in concrete increased linearly with temperature. After exposure to different elevated temperatures, the chloride ion content in BFRC varied greatly with increasing stress. The compressive stress ratio threshold for the chloride ion penetration was measured. A calculation model of BFRC chloride ion diffusion coefficient under the coupling effect of elevated temperatures and mechanical damage (loading test) was proposed.
The durability of subsea tunnels under the coupled action of stress and chloride ions was analyzed to estimate the service life and provide a theoretical foundation for durability design. The influence coefficient of the stress on chloride ion transmission at lower stress levels was discussed according to the material mechanics, and was verified by experimental data. A stress calculation model of a subsea tunnel’s lining section is proposed based on the plane-section assumption. Considering the space-time effect of the convection velocity, a partial differential equation was constructed to calculate the chloride ion transfer condition under the coupled action of stress-convection-diffusion. The numerical solution of the partial differential equation was solved and the sensitivity of the parameters was analyzed. The subsea tunnel’s time-varying reliability index was calculated following the Monte Carlo method, and was used to predict the service life. The results show that the chloride ion concentration calculated by considering the coupled action is larger and the reliability index is lower than calculated only considering diffusion. Our findings contribute to the conclusion that durability designs of subsea tunnels should consider the coupled action of stress-convection-diffusion. An effective method to improve the service life of a subsea tunnel is to reduce the water–binder ratio or increase the thickness of protective cover.
In this study, changes to the macroscopic properties and microstructure of basalt fiber reinforced concrete exposed to high temperature were tested. Central temperature, mass loss, mechanical properties, and the synergistic mechanism of basalt fiber and concrete matrix under different temperatures were analyzed. The results show that basalt fiber reinforced concrete provides excellent thermal insulation and can, to some extent, mitigate the blowup phenomenon.Adding basalt fiber effectively improves the mechanical properties of concrete exposed high temperatures. However, the synergetic effects of basalt fiber and concrete matrix vary with temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.