BACKGROUND:
Gene expression can be posttranscriptionally regulated by a complex network of proteins. N1-methyladenosine (m1A) is a newly validated RNA modification. However, little is known about both its influence and biogenesis in tumor development.
METHODS:
This study analyzed TCGA data of patients with five kinds of gastrointestinal (GI) cancers. Using data from cBioPortal, molecular features of the nine known m1A-related enzymes in GI cancers were investigated. Using a variety of bioinformatics approach, the impact of m1A regulators on its downstream signaling pathway was studied. To further confirm this regulation, the effect of m1A writer ALKBH3 knockdown was studied using RNA-seq data from published database.
RESULTS:
Dysregulation and multiple types of genetic alteration of putative m1A-related enzymes in tumor samples were observed. The ErbB and mTOR pathways with ErbB2, mTOR, and AKT1S1 hub genes were identified as being regulated by m1A-related enzymes. The expression of both ErbB2 and AKT1S1 was decreased after m1A writer ALKBH3 knockdown. Furthermore, Gene Ontology analysis revealed that m1A downstream genes were associated with cell proliferation, and the results showed that m1A genes are reliably linked to mTOR.
CONCLUSION:
This study demonstrated for the first time the dysregulation of m1A regulators in GI cancer and its signaling pathways and will contribute to the understanding of RNA modification in cancer.
This study prepared a composite scaffold composed of curcumin and poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) (PCL-PEG-PCL, PCEC) copolymer using coelectrospinning technology. Incorporation of curcumin into the polymeric matrix had an obvious effect on the morphology and dimension of PCEC/curcumin fibers. The results of in vitro anti-oxidant tests and of the cytotoxicity assay demonstrated that the curcumin-loaded PCEC fibrous mats had significant anti-oxidant efficacy and low cytotoxicity. Curcumin could be sustainably released from the fibrous scaffolds. More importantly, in vivo efficacy in enhancing wound repair was also investigated based on a full-thickness dermal defect model for Wistar rats. The results indicated that the PCEC/curcumin fibrous mats had a significant advantage in promoting wound healing. At 21 days post-operation, the dermal defect was basically recovered to its normal condition. A percentage of wound closure reached up to 93.3 ± 5.6% compared with 76.9 ± 4.9% of the untreated control (p < 0.05). Therefore, the as-prepared PCEC/curcumin composite mats are a promising candidate for use as wound dressing.
This review provides insight into the role of engineered T-cell receptors (TCRs) in immunotherapy. Novel approaches have been developed to boost anticancer immune system, including targeting new antigens, manufacturing new engineered or modified TCRs, and creating a safety switch for endo-suicide genes. In order to re-activate T cells against tumors, immune-mobilizing monoclonal TCRs against cancer (ImmTAC) have been developed as a novel class of manufactured molecules which are bispecific and recognize both cancer and T cells. The TCRs target special antigens such as NY-ESO-1, AHNAKS2580F or ERBB2H473Y to boost the efficacy of anticancer immunotherapy. The safety of genetically modified T cells is very important. Therefore, this review discusses pros and cons of different approaches, such as ImmTAC, Herpes simplex virus thymidine kinase (HSV-TK), and inducible caspase-9 in cancer immunotherapy. Clinical trials related to TCR-T cell therapy and monoclonal antibodies designed for overcoming immunosuppression, and recent advances made in understanding how TCRs are additionally examined. New approaches that can better detect antigens and drive an effective T cell response are discussed as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.