Based on deep learning technology, a new spatiotemporal flow data representation and reconstruction scheme is proposed by using flow time history (FTH) data instead of flow snapshots. First, the high-dimensional nonlinear flow system is reduced to a low-dimensional representation latent code using the FTH autoencoder model. Second, the mapping from physical space to latent code space is built using mathematical and machine-learning schemes. Finally, FTH at unavailable positions in physical space is generated by the FTH generator. The proposed scheme is validated by three case studies: (i) representing and recovering the FTH data of periodic laminar flow around a circular cylinder at Re = 200 and generating high-resolution laminar flow data; (ii) reconstructing complex FTH of flow past cylinder at Re = 3900 which including laminar and turbulent flow region and generating three-dimensional high-resolution turbulent flow data, respectively; (iii) representing and generating multi-variable turbulent flow data simultaneously using the multi-channel model. The results show that the proposed scheme is an effective low-dimensional representation for complex flow time variant features, which is suitable for both laminar and turbulent FTH data to generate spatiotemporal high-resolution FTH data in three-dimensional space.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.