Autophagic and endocytic pathways are tightly regulated membrane rearrangement processes that are crucial for homeostasis, development and disease. Autophagic cargo is delivered from autophagosomes to lysosomes for degradation through a complex process that topologically resembles endosomal maturation. Here, we report that a Beclin1-binding autophagic tumour suppressor, UVRAG, interacts with the class C Vps complex, a key component of the endosomal fusion machinery. This interaction stimulates Rab7 GTPase activity and autophagosome fusion with late endosomes/lysosomes, thereby enhancing delivery and degradation of autophagic cargo. Furthermore, the UVRAG-class-C-Vps complex accelerates endosome-endosome fusion, resulting in rapid degradation of endocytic cargo. Remarkably, autophagosome/endosome maturation mediated by the UVRAG-class-C-Vps complex is genetically separable from UVRAG-Beclin1-mediated autophagosome formation. This result indicates that UVRAG functions as a multivalent trafficking effector that regulates not only two important steps of autophagy -autophagosome formation and maturation -but also endosomal fusion, which concomitantly promotes transport of autophagic and endocytic cargo to the degradative compartments.© 2008 Macmillan Publishers Limited. All rights reserved. 6 Correspondence should be addressed to J.U.J. (jaeujung@usc.edu). AUTHOR CONTRIBUTIONS C.L. performed all aspects of this study; L.S., K.I., M.G., Q.L. and P.F. assisted with the experimental design and in collecting the data; E.R., I.V. and V.D. assisted with the autophagic protein degradation and in vitro endosome fusion assay; C.A. provided Vps constructs and their antibodies; C.L. and J.J. organized this study and wrote the paper. All authors discussed the results and commented on the manuscript.Note: Supplementary Information is available on the Nature Cell Biology website. COMPETING FINANCIAL INTERESTSThe authors declare no competing financial interests.Reprints and permissions information is available online at http://npg.nature.com/reprintsandpermissions/ NIH Public Access Author ManuscriptNat Cell Biol. Author manuscript; available in PMC 2010 May 31. Published in final edited form as:Nat Cell Biol. 2008 July ; 10(7): 776-787. doi:10.1038/ncb1740. NIH-PA Author ManuscriptNIH-PA Author Manuscript NIH-PA Author ManuscriptAutophagy is a tightly regulated membrane rearrangement process that ensures lysosomedependent bulk degradation of cytosolic proteins or organelles, and is highly conserved in eukaryotic cells, as seen with the endocytic pathway 1 . In response to environmental stresses, portions of cytoplasmic constituents are engulfed by a unique membrane structure, the phagophore, as it elongates to form a double-or multiple-membrane-bound compartment called the autophagosome. Newly synthesized autophagosomes then undergo extensive remodelling to acquire degradative capabilities. The remodelling process, also known as autophagosomal maturation, involves sequential fusion of autophagosomes with endocytic vesicles...
Transforming growth factor  (TGF-) is a potent multifunctional regulator of cell growth and differentiation. Although nearly all cells synthesize and respond to TGF-, bone and cartilage are particularly rich in this growth factor (6, 46). TGF-1, the prototypic member of the TGF- superfamily, elicits diverse cellular responses, including (i) inhibition of adipogenesis and myogenesis and (ii) stimulation of chondrogenesis and osteogenesis (31). TGF-1 stimulates the synthesis of matrix proteins and their receptors (for example, fibronectin, fibronectin receptor, collagen, osteonectin, osteopontin, and integrins) and inhibits matrix degradation by increasing the production of protease inhibitors and decreasing the production of proteases (42). Members of the TGF- superfamily with important effects on bone cell differentiation are bone morphogenetic proteins (BMPs) (17, 41), which were first identified as factors that induce bone formation in vivo when implanted into muscular tissues (54). Unlike TGF-, which induces new bone formation only when injected near bone, BMPs produce bone formation even when injected into ectopic sites. TGF- and BMPs bind to distinct receptors, TGF- type I and II receptors for TGF- and BMP type I and II receptors for BMPs. Following ligand binding, the receptor-associated kinase is activated and phosphorylates Smads, which move into the nucleus to stimulate the transcription of a set of target genes. Smad2 and -3 are activated by TGF- receptors and mediate TGF- responses, whereas Smad1, -5, and -8 are activated by BMP receptors and transduce BMP signals (15,32,57).The pluripotent mesenchymal precursor cell line C2C12 provides a model system to study the early stage of osteoblast differentiation during bone formation in muscular tissues. In this model, TGF-1 inhibits the differentiation of C2C12 cells into multinucleated myotubes without inducing osteoblast phenotypes. BMP-2 not only inhibits the terminal differentiation of C2C12 cells but also induces osteoblast phenotypes (20). Therefore, the C2C12 model is useful for analyzing both the common and specific signaling mechanisms of TGF- and BMPs. In C2C12 cells, overexpression of Smad1 and Smad5 induced alkaline phosphatase (ALP) activity, a typical osteoblast-specific marker, and inhibited muscle-specific gene expression (11,36,56). These results suggested that BMP functions via either Smad1 or Smad5 and that the induction of the osteoblast phenotype and the inhibition of myogenic differentiation are regulated at the transcriptional level. However, the molecular mechanisms through which Smads block myogenic differentiation and induce osteogenic differentiation are not known.Runx/PEBP2/Cbf (hereafter referred to as Runx) is a sequence-specific DNA binding protein that recognizes a specific DNA sequence originally identified as the binding site for
Background COVID-19 has spread globally. Epidemiological susceptibility to COVID-19 has been reported in patients with cancer. We aimed to systematically characterise clinical features and determine risk factors of COVID-19 disease severity for patients with cancer and COVID-19. MethodsIn this multicentre, retrospective, cohort study, we included all adult patients (aged ≥18 years) with any type of malignant solid tumours and haematological malignancy who were admitted to nine hospitals in Wuhan, China, with laboratory-confirmed COVID-19 between Jan 13 and March 18, 2020. Enrolled patients were statistically matched (2:1) with patients admitted with COVID-19 who did not have cancer with propensity score on the basis of age, sex, and comorbidities. Demographic characteristics, laboratory examinations, illness severity, and clinical interventions were compared between patients with COVID-19 with or without cancer as well as between patients with cancer with non-severe or severe COVID-19. COVID-19 disease severity was defined on admission on the basis of the WHO guidelines. Univariable and multivariable logistic regression, adjusted for age, sex, comorbidities, cancer type, tumour stage, and antitumour treatments, were used to explore risk factors associated with COVID-19 disease severity. This study was registered in the Chinese Clinical Trial Register, ChiCTR2000030807. Findings Between Jan 13 and March 18, 2020, 13 077 patients with COVID-19 were admitted to the nine hospitals in Wuhan and 232 patients with cancer and 519 statistically matched patients without cancer were enrolled. Median follow-up was 29 days (IQR 22-38) in patients with cancer and 27 days (20-35) in patients without cancer. Patients with cancer were more likely to have severe COVID-19 than patients without cancer (148 [64%] of 232 vs 166 [32%] of 519; odds ratio [OR] 3•61 [95% CI 2•59-5•04]; p<0•0001). Risk factors previously reported in patients without cancer, such as older age; elevated interleukin 6, procalcitonin, and D-dimer; and reduced lymphocytes were validated in patients with cancer. We also identified advanced tumour stage (OR 2•60, 95% CI 1•05-6•43; p=0•039), elevated tumour necrosis factor α (1•22, 1•01-1•47; p=0•037), elevated N-terminal pro-B-type natriuretic peptide (1•65, 1•03-2•78; p=0•032), reduced CD4+ T cells (0•84, 0•71-0•98; p=0•031), and reduced albumin-globulin ratio (0•12, 0•02-0•77; p=0•024) as risk factors of COVID-19 severity in patients with cancer. Interpretation Patients with cancer and COVID-19 were more likely to deteriorate into severe illness than those without cancer. The risk factors identified here could be helpful for early clinical surveillance of disease progression in patients with cancer who present with COVID-19.
Autophagy is an active homeostatic degradation process for the removal or turnover of cytoplasmic components wherein the LC3 ubiquitin-like protein undergoes an Atg7 E1-like enzyme/Atg3 E2-like enzyme-mediated conjugation process to induce autophagosome biogenesis1–4. Besides its cytoprotecive role, autophagy acts on cell death when it is abnormally upregulated. Thus, the autophagy pathway requires tight regulation to ensure that this degradative process is well balanced. Two death effector domains (DED1/2) containing cellular FLICE-like inhibitor protein (cFLIP) and viral FLIP (vFLIP) of Kaposi’s sarcoma-associated herpesvirus (KSHV), Herpesvirus saimiri (HVS), and Molluscum contagiosum virus (MCV) protect cells from apoptosis mediated by death receptors5,6. Here, we report that cellular and viral FLIPs suppress autophagy by preventing Atg3 from binding and processing LC3. Consequently, FLIP expression effectively represses cell death with autophagy, as induced by rapamycin, an mTor inhibitor and an effective anti-tumour drug against KSHV-induced Kaposi’s sarcoma (KS) and primary effusion lymphoma (PEL)7,8. Remarkably, either a DED1 α2-helix ten amino-acid (α2) peptide or a DED2 α4-helix twelve amino-acid (α4) peptide of FLIP is individually sufficient for binding FLIP itself and Atg3, with the peptide interactions effectively suppressing Atg3–FLIP interaction without affecting Atg3-LC3 interaction, resulting in robust cell death with autophagy. Our study thus identifies a checkpoint of the autophagy pathway where cellular and viral FLIPs limit the Atg3-mediated step of LC3 conjugation to regulate autophagosome biogenesis. Furthermore, the FLIP-derived short peptides induce growth suppression and cell death with autophagy, representing biologically active molecules for potential anti-cancer therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.