Recent research has shown that ferroptosis, the iron-dependent accumulation of lipid peroxides that leads to cell death, suppresses cancer metastasis. However, the role of ferroptosis in prostate cancer metastasis has not been completely elucidated. In the current study, we identified the essential role of serum/glucocorticoid regulated kinase 2 (SGK2) in promoting prostate cancer metastasis by inhibiting ferroptosis. We found that the expression of SGK2 was higher in metastatic prostate cancer and predicted poor clinical outcomes. SGK2 knockdown inhibited the metastatic capacity of prostate cancer cells in vivo and in vitro, while SGK2 overexpression inhibited ferroptosis and facilitated prostate cancer metastasis by phosphorylating the Thr-24 and Ser-319 sites of forkhead box O1 (FOXO1). This process induced the translocation of FOXO1 from the nucleus to the cytoplasm, relieving the inhibitory effect of FOXO1 on glutathione peroxidase 4 (GPX4). These findings delineated a novel role of SGK2 in ferroptosis regulation of prostate cancer metastasis, identifying a new key pathway driving prostate cancer metastasis and potentially providing new treatment strategies for metastatic prostate cancer.
Background: A new form of cell death, copper-dependent cell death (termed cuproptosis), was illustrated in a recent scientific study. However, the biological function or prognostic value of cuproptosis regulators in bladder cancer (BLCA) remains unknown.Materials and Methods: Sequencing data obtained from BLCA samples in TCGA and GEO databases were preprocessed for analysis. Biological function and immune cell infiltration levels evaluated by gene set variation analysis (GSVA) were employed to calculate enrichment scores. Iteration least absolute shrinkage and selection operator (LASSO) and COX regression model were employed to select feature genes and construct a novel cuproptosis-related (CR) score signature. The genomics of drug sensitivity in cancer (GDSC) and tumor immune dysfunction and exclusion (TIDE) analysis were used to predict the chemotherapy and immunotherapy efficacy for BLCA patients. The relative expression of the genes involved in the signature was also verified by real-time quantitative PCR (qRT-PCR) in cell lines and tissues.Results: Expression abundance and the prognostic value of cuproptosis regulators proved that cuproptosis might play a vital part in the carcinogenesis of BLCA. GSVA revealed that cuproptosis regulators might be associated with metabolism and metastasis-related pathways such as TGF-β, protein secretion, oxidative Phosphorylation, MYC targets, MTORC1, and adipogenesis pathways. CR scores could predict the prognosis and evaluate the chemotherapy and immunotherapy efficacies of BLCA. CR scores were positively correlated with EMT, MYC, MTORC1, HEDGEHOG, and E2F signaling pathways; meanwhile, they were negatively correlated with several immune cell infiltration levels such as CD8+ T cells, γδT cells, and activated dendritic cells. Several GEO datasets were used to validate the power of prognostic prediction, and a nomogram was also established for clinical use. The expressions of DDX10, RBM34, and RPL17 were significantly higher in BLCA cell lines and tissues in comparison with those in the corresponding normal controls.Conclusion: Cuproptosis might play an essential role in the progression of BLCA. CR scores could be helpful in the investigation of prognostic prediction and therapeutic efficacy and could make contributions to further studies in BLCA.
Erdafitinib is a novel fibroblast growth factor receptor (FGFR) inhibitor that has shown great therapeutic promise for solid tumor patients with FGFR3 alterations, especially in urothelial carcinoma. However, the mechanisms of resistance to FGFR inhibitors remain poorly understood. In this study, we found Erdafitinib could kill cells by inducing incomplete autophagy and increasing intracellular reactive oxygen species levels. We have established an Erdafitinib‐resistant cell line, RT‐112‐RS. whole transcriptome RNA sequencing (RNA‐Seq) and Cytospace analysis performed on Erdafitinib‐resistant RT‐112‐RS cells and parental RT‐112 cells introduced P4HA2 as a linchpin to Erdafitinib resistance. The gain and loss of function study provided evidence for P4HA2 conferring such resistance in RT‐112 cells. Furthermore, P4HA2 could stabilize the HIF‐1α protein which then activated downstream target genes to reduce reactive oxygen species levels in bladder cancer. In turn, HIF‐1α could directly bind to P4HA2 promoter, indicating a positive loop between P4HA2 and HIF‐1α in bladder cancer. These results suggest a substantial role of P4HA2 in mediating acquired resistance to Erdafitinib and provide a potential target for bladder cancer treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.