Antimicrobial peptide (AMP) can be a promising alternative in various domains. However, further risk information is required. In this study, mice were orally administrated different dosages of recombinant AMP microcin J25 (4.55, 9.1, and 18.2 mg/kg; MccJ25) for 1 week, and the toxicity risk impacts were examined. We evidenced that middle-dosage administration mice had a lower inflammation, better body weight, and ameliorated mucosal morphology, accompanied by reduced intestinal permeability and tighter intestinal barrier. Fecal microbiota composition analysis in middle-or low-dosage mice revealed the Bifidobacterium count was increased and the coliform bacteria count was decreased, and increased in shortchain fatty acid levels. Unexpectedly, there was a risk that high-dosage mice increased intestinal permeability and imbalance of intestinal bacteria. Taken together, these data indicated a safe threshold for usage of MccJ25 in clinical practice. Such studies can effectively enhance the safety of various aspects such as food preservative and drug.
Recombinant antimicrobial peptide microcin J25 (MccJ25) causes potent antimicrobial activity against enterotoxigenic Escherichia coli (ETEC) in vitro; however, independently of this activity, its role in suppressing intestinal inflammation and epithelial barrier injury in vivo remains unclear. We investigated the therapeutic effects of MccJ25 on intestinal inflammation and epithelial barrier dysfunction and the underlying mechanism, using gentamicin for comparison. In a mouse model of intestinal inflammation, therapeutic administration of either MccJ25 or gentamicin after ETEC K88 infection attenuated clinical symptoms, reduced intestinal pathogen colonization, improved intestinal morphology, and decreased inflammatory pathologies and intestinal permeability, ultimately improving the hosts' health. MccJ25 also attenuated ETEC-induced mouse intestinal barrier dysfunction by enhancing tight junction proteins (TJPs). Using the human epithelial cell line Caco-2, we verified the epithelial barrier-strengthening and mucosal injury-alleviating effects of MccJ25 on ETEC infection: increased expression of TJPs by activating the p38/MAPK pathway, balancing the microbiota, and improving short-chain fatty acid concentrations in the cecum of ETEC-infected mice. Although gentamicin and MccJ25 had similar effects in the inflamed gut, MccJ25 was superior to gentamicin with regard to defending the host from ETEC infection. Overall, MccJ25 may be a promising therapeutic drug for treating enteric pathogen-induced intestinal inflammation diseases. K E Y W O R D S gut microbiota, inflamed gut, inflammation diseases, intestinal barrier injury, mice, pathogens infection | 1019 YU et al.
The purpose of this study was to investigate the effects of antimicrobial peptide microcin J25 (MccJ25) on growth performance, immune regulation, and intestinal microbiota in broilers. A total of 3120 one-day-old male Arbor Acres (AA) broilers were randomly allocated to five groups (12 replicates, 52 chickens per replicate). The treatments were control, challenge (0 mg/kg MccJ25), different dosages of antimicrobial peptide (AMP) (0.5 and 1mg/kg MccJ25), and antibiotic groups (20 mg/kg colistin sulfate). The MccJ25 groups increased the body weight gain (starter and overall) that was reduced in the challenge group. The overall (day 1 to day 42) feed-to-gain ratio (G:F) was significantly decreased in AMP groups compared with the challenge group. Birds fed AMP had a decreased population of total anaerobic bacteria (day 21 and day 42) and E. coli (day 21 and day 42) in feces, as well as a lower Salmonella infection rate (day 21 and day 42) compared with birds in the challenge group. The villus height of the duodenum, jejunum, and ileum, as well as the villus height/crypt depth of the duodenum and jejunum were greater in AMP groups than birds in the challenge group. Moreover, MccJ25 linearly improved the villus height of the duodenum and jejunum. The addition of MccJ25 decreased the concentration of TNF-α, IL-1β, and IL-6 compared with challenge group. At d 21, MccJ25 linearly reduced the level of IL-6. In conclusion, dietary supplemented MccJ25 effectively improved performance, systematic inflammation, and improved fecal microbiota composition of the broilers.
Natural microcin J25 (MccJ25) represent promising alternatives to traditional antibiotics for the treatment of drug-resistant infections. However, little is known about the antibacterial activity of recombinant MccJ25 against foodborne pathogens. Here, the activity of recombinant MccJ25 was examined using a matrix of conditions in order to assess the efficacy of recombinant MccJ25 as a mitigation against foodborne pathogens, such as Salmonella species and Escherichia coli ( E. coli ) O157:H7. Results showed that recombinant MccJ25 displayed excellent antimicrobial activity against these foodborne pathogens, including clinical isolates of Salmonella and E. coli , as well as clinical antibiotic-resistant Salmonella and E. coli isolates with different minimal inhibitory concentrations. In addition, antimicrobial activity curves and Live/Dead assay evidenced that recombinant MccJ25 harbors strong bactericidal activity against Salmonella and E. coli O157:H7. Notably, recombinant MccJ25 also had great potency and induced fast mortality against different growth phase of Salmonella and E. coli. The stability analysis results showed that the activity of recombinant MccJ25 was not influenced by temperatures as high as 121°C. Varying the pH from 2.0 to 9.0 did not appear to affect the activity of recombinant MccJ25. Under the challenge of several proteases, simulated gastrointestinal fluids and serum, recombinant MccJ25 still maintained exceptionally strong antimicrobial activity. Significant reductions in Salmonella Pullorum levels were also achieved in food biological environments, such as milk, egg and meat. Moreover, we demonstrated that recombinant MccJ25 appeared to act by inducing membrane breaks, thinning, and disintegration in the Salmonella Pullorum cytoplasmic membrane. Taken together, these results indicated that recombinant MccJ25 could be an effective alternative for mitigating and prevention of Salmonella and E. coli infection in food, animal and agriculture applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.