Fluorescent probes in the second near-infrared window (NIR-II) allow high-resolution bioimaging with deep-tissue penetration. However, existing NIR-II materials often have poor signal-to-background ratios because of the lack of target specificity. Herein, an activatable NIR-II nanoprobe for visualizing colorectal cancers was devised. This designed probe displays H S-activated ratiometric fluorescence and light-up NIR-II emission at 900-1300 nm. By using this activatable and target specific probe for deep-tissue imaging of H S-rich colon cancer cells, accurate identification of colorectal tumors in animal models were performed. It is anticipated that the development of activatable NIR-II probes will find widespread applications in biological and clinical systems.
Near-infrared (NIR)-II fluorescence agents hold great promise for deep-tissue photothermal therapy (PTT) of cancers, which nevertheless remains restricted by the inherent nonspecificity and toxicity of PTT. In response to this challenge, we herein develop a hydrogen sulfide (H2S)-activatable nanostructured photothermal agent (Nano-PT) for site-specific NIR-II fluorescence-guided PTT of colorectal cancer (CRC). Our in vivo studies reveal that this theranostic Nano-PT probe is specifically activated in H2S-rich CRC tissues, whereas it is nonfunctional in normal tissues. Activation of Nano-PT not only emits NIR-II fluorescence with deeper tissue penetration ability than conventional fluorescent probes but also generates high NIR absorption resulting in efficient photothermal conversion under NIR laser irradiation. Importantly, we establish NIR-II imaging-guided PTT of CRC by applying the Nano-PT agent in tumor-bearing mice, which results in complete tumor regression with minimal nonspecific damages. Our studies thus shed light on the development of cancer biomarker-activated PTT for precision medicine.
Ultra-wide bandgap semiconductor Ga2O3 based electronic devices are expected to perform beyond wide bandgap counterparts GaN and SiC. However, the reported power figure-of-merit hardly can exceed, which is far below the projected Ga2O3 material limit. Major obstacles are high breakdown voltage requires low doping material and PN junction termination, contradicting with low specific on-resistance and simultaneous achieving of n- and p-type doping, respectively. In this work, we demonstrate that Ga2O3 heterojunction PN diodes can overcome above challenges. By implementing the holes injection in the Ga2O3, bipolar transport can induce conductivity modulation and low resistance in a low doping Ga2O3 material. Therefore, breakdown voltage of 8.32 kV, specific on-resistance of 5.24 mΩ⋅cm2, power figure-of-merit of 13.2 GW/cm2, and turn-on voltage of 1.8 V are achieved. The power figure-of-merit value surpasses the 1-D unipolar limit of GaN and SiC. Those Ga2O3 power diodes demonstrate their great potential for next-generation power electronics applications.
Arsenic trioxide (ATO) is a successful chemotherapeutic drug for blood cancers via selective induction of apoptosis; however its efficacy in solid tumors is limited. Here we repurpose nanodiamonds (NDs) as a safe and potent autophagic inhibitor to allosterically improve the therapeutic efficacy of ATO-based treatment in solid tumors. We find that NDs and ATO are physically separate and functionally target different cellular pathways (autophagy vs. apoptosis); whereas their metabolic coupling in human liver carcinoma cells remarkably enhances programmed cell death. Combination therapy in liver tumor mice model results in ~91% carcinoma decrease as compared with ~28% without NDs. Treated mice show 100% survival rate in 150 days with greatly reduced advanced liver carcinoma-associated symptoms, and ~80% of post-therapy mice survive for over 20 weeks. Our work presents a novel strategy to harness the power of nanoparticles to broaden the scope of ATO-based therapy and more generally to fight solid tumors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.