Crystal facet engineering of semiconductors is of growing interest and an important strategy for fine-tuning solar-driven photocatalytic activity. However, the primary factor in the exposed active facets that determines the photocatalytic property is still elusive. Herein, we have experimentally achieved high solar photocatalytic activity in ultrathin BiOCl nanosheets with almost fully exposed active {001} facets and provide some new and deep-seated insights into how the defects in the exposed active facets affect the solar-driven photocatalytic property. As the thickness of the nanosheets reduces to atomic scale, the predominant defects change from isolated defects V(Bi)‴ to triple vacancy associates V(Bi)‴V(O)••V(Bi)‴, which is unambiguously confirmed by the positron annihilation spectra. By virtue of the synergic advantages of enhanced adsorption capability, effective separation of electron–hole pairs and more reductive photoexcited electrons benefited from the V(Bi)‴V(O)••V(Bi)‴ vacancy associates, the ultrathin BiOCl nanosheets show significantly promoted solar-driven photocatalytic activity, even with extremely low photocatalyst loading. The finding of the existence of distinct defects (different from those in bulks) in ultrathin nanosheets undoubtedly leads to new possibilities for photocatalyst design using quasi-two-dimensional materials with high solar-driven photocatalytic activity.
Enabled by the reversible conversion between Li2O2 and O2, Li-O2 batteries promise theoretical gravimetric capacities significantly greater than Li-ion batteries. The poor cycling performance, however, has greatly hindered the development of this technology. At the heart of the problem is the reactivity exhibited by the carbon cathode support under cell operation conditions. One strategy is to conceal the carbon surface from reactive intermediates. Herein, we show that long cyclability can be achieved on three dimensionally ordered mesoporous (3DOm) carbon by growing a thin layer of FeO(x) using atomic layer deposition (ALD). 3DOm carbon distinguishes itself from other carbon materials with well-defined pore structures, providing a unique material to gain insight into processes key to the operations of Li-O2 batteries. When decorated with Pd nanoparticle catalysts, the new cathode exhibits a capacity greater than 6000 mAh g(carbon) (-1) and cyclability of more than 68 cycles.
As a promising high-capacity energy storage technology, Li-O2 batteries face two critical challenges, poor cycle lifetime and low round-trip efficiencies, both of which are connected to the high overpotentials. The problem is particularly acute during recharge, where the reactions typically follow two-electron mechanisms that are inherently slow. Here we present a strategy that can significantly reduce recharge overpotentials. Our approach seeks to promote Li2O2 decomposition by one-electron processes, and the key is to stabilize the important intermediate of superoxide species. With the introduction of a highly polarizing electrolyte, we observe that recharge processes are successfully switched from a two-electron pathway to a single-electron one. While a similar one-electron route has been reported for the discharge processes, it has rarely been described for recharge except for the initial stage due to the poor mobilities of surface bound superoxide ions (O2(-)), a necessary intermediate for the mechanism. Key to our observation is the solvation of O2(-) by an ionic liquid electrolyte (PYR14TFSI). Recharge overpotentials as low as 0.19 V at 100 mA/g(carbon) are measured.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.