Induced-charge electroosmosis (ICEO) phenomena have been attracting considerable attention as a means for pumping and mixing in microfluidic systems with the advantage of simple structures and low-energy consumption. We propose the first effort to exploit a fixed-potential ICEO flow around a floating electrode for microfluidic mixing. In analogy with the field effect transistor (FET) in microelectronics, the floating electrode act as a "gate" electrode for generating asymmetric ICEO flow and thus the device is called an AC-flow FET (AC-FFET). We take advantage of a tandem electrode configuration containing two biased center metal strips arranged in sequence at the bottom of the channel to generate asymmetric vortexes. The current device is manufactured on low-cost glass substrates via an easy and reliable process. Mixing experiments were conducted in the proposed device and the comparison between simulation and experimental results was also carried out, which indicates that the micromixer permits an efficient mixing effect. The mixing performance can be further enhanced by the application of a suitable phase difference between the driving electrode and the gate electrode or a square wave signal. Finally, we performed a critical analysis of the proposed micromixer in comparison with different mixer designs using a comparative mixing index (CMI). The novel methods put forward here offer a simple solution to mixing issues in microfluidic systems.
We utilize an ac electric field to trigger the on-demand fusion of two aqueous cores inside water-in-oil-in-water (W/O/W) double-emulsion drops. We attribute the coalescence phenomenon to field-induced structural polarization and breakdown of the stress balance at interfaces. This method provides not only accurate control over the reaction time of coalescence but also protection of the reaction from cross contamination.
We propose a novel continuous-flow microfluidic particle concentrator with a specified focusing-particle number ratio (FR) at different channel outlets using induced-charge electroosmosis (ICEO). The particle-focusing region contains two floating electrodes of asymmetric widths L2 and L1 in the gap between a driving electrode pair, all of which are fabricated in parallel in the main channel. Applying an AC voltage over the driving electrodes, an ICEO flow with two vortexes can be induced over each of the two floating electrodes, and the actuation range of the ICEO vortex is proportional to the respective electrode size. We establish a preliminary physical model for the value of FR: at a moderate voltage and frequency range, FR approaches L2/L1 due to the scaled ICEO actuation range; by further modifying the voltage or frequency, FR is freely adjustable because of the variation in ICEO velocity. Furthermore, by connecting multiple focusing regions in series, i.e., high FR = (L2/L1)(n) can be conveniently generated in an n-stage flow focusing device. Our results provide a promising method for yielding transverse concentration gradients of particles useful in pre-processing before analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.