Highlights A R744 GSHP system with air-cooled and water-cooled gas coolers was designed. Earth's energy imbalance degree for the proposed R744 system was analyzed. Investment and operation costs of the R744 system were decreased. Effect of ground heat exchanger depth on system performance was analyzed.
In this paper, an adaptive iterative learning control (AILC) law is developed for two-link rigid-flexible coupled manipulator system in three-dimensional (3D) space with time-varying disturbances and input constraints. Based on the Hamilton’s principle, a dynamic model of a manipulator system is established. The conditional equation that is coupled by ordinary differential equations and partial differential equations is derived. In order to achieve high-precision tracking of the revolving angles and vibration suppression of the elastic part, the iterative learning control law based on the disturbance observer is considered in the process of the design controller. The composite Lyapunov energy function is proposed to prove that the angle errors and elastic deformation can eventually converge to zero with the increase of the number of iterations. Ultimately, the simulation results to rigid-flexible coupled manipulator system are given to prove the convergence of the control objectives under the adaptive iterative learning control law.
A facile hydrothermal process has been developed to synthesize the α-Fe2O3 nanowire arrays with a preferential growth orientation along the [110] direction. The W/α-Fe2O3/FTO memory device with the nonvolatile resistive switching behavior has been achieved. The resistance ratio (RHRS/RLRS) of the W/α-Fe2O3/FTO memory device exceeds two orders of magnitude, which can be preserved for more than 103s without obvious decline. Furthermore, the carrier transport properties of the W/α-Fe2O3/FTO memory device are dominated by the Ohmic conduction mechanism in the low resistance state and trap-controlled space-charge-limited current conduction mechanism in the high resistance state, respectively. The partial formation and rupture of conducting nanofilaments modified by the intrinsic oxygen vacancies have been suggested to be responsible for the nonvolatile resistive switching behavior of the W/α-Fe2O3/FTO memory device. This work suggests that the as-prepared α-Fe2O3 nanowire-based W/α-Fe2O3/FTO memory device may be a potential candidate for applications in the next-generation nonvolatile memory devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.