Among small rotorcraft, the use of multiple compact rotors in a mechanically simple design leads to impressive agility and maneuverability but inevitably results in high energetic demand and acutely restricted endurance. Small spinning propellers used in these vehicles contrast with large lifting surfaces of winged seeds, which spontaneously gyrate into stable autorotation upon falling. The pronounced aerodynamic surfaces and delayed stalls are believed key to efficient unpowered flight. Here, the bioinspired principles are adopted to notably reduce the power consumption of small aerial vehicles by means of a samara-inspired robot. We report a dual-wing 35.1-gram aircraft capable of hovering flight via powered gyration. Equipped with two rotors, the underactuated robot with oversized revolving wings, designed to leverage unsteady aerodynamics, was optimized for boosted flight efficiency. Through the analysis of flight dynamics and stability, the vehicle was designed for passive attitude stability, eliminating the need for fast feedback to stay upright. To this end, the drone demonstrates flight with a twofold decrease in power consumption when compared with benchmark multirotor robots. Exhibiting the power loading of 8.0 grams per watt, the vehicle recorded a flight time of 14.9 minutes and up to 24.5 minutes when equipped with a larger battery. Taking advantage of the fast revolving motion to overcome the severe underactuation, we also realized position-controlled flight and illustrated examples of mapping and surveillance applications with a 21.5-gram payload.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.