Energy efficiency (EE) maximization problem for Cognitive Underwater Acoustic Network is investigated in this study. Available works on EE usually assume that spectrum sensing is accurate or that channel state information (CSI) is perfect, which is often impractical. Thus, an adaptive resource allocation scheme is proposed to maximize the EE, subject to the transmission power constraint of secondary user (SU) and the interference power constraint of primary user (PU). By taking the spectrum sensing errors into account, we add power interference from PU to SU in the objective function. Besides, interference tolerance factor is introduced to control the interference from SU to PU. Assuming CSI uncertainties of the involved channels are bounded, they are separately modeled as stochastic-case or worst-case according to their nature. Since the established optimization problem is nonconvex, it is converted into a convex one and then solved by the techniques of fractional programming and dual decomposition. Simulation results validate that the EE can be improved by classifying the CSI uncertainties and solving the expectation of the CSI correlation function. Furthermore, the interference from SU to PU can be controlled well by the adjustment of the interference tolerance factor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.