Chlorogenic acid is a well-known antioxidant and has more isomers according to the difference in binding location and number of caffeic on quinic acid. In this study, we investigated and compared the profiles of antioxidant and DNA-protective activities of chlorogenic acid isomers including three caffeoylquinic acid isomers (3-O-caffeoylquinic acid, 3-CQA; 4-O-caffeoylquinic acid, 4-CQA; and 5-O- caffeoylquinic acid, 5-CQA) and three dicaffeoylquinic acid isomers (3,5-dicaffeoyl-quinic acid, ICAA; 3,4-dicaffeoylquinic acid, ICAB; and 4,5-dicaffeoyl-quinic acid, ICAC). The results showed that each of chlorogenic acid isomers studied exhibited antioxidant activities and DNA damage protective effects to various extents. On the whole, dicaffeoylquinic acids possessed better antioxidant activities, mostly because they have more hydroxyl groups than caffeoylquinic acids. Three caffeoylquinic acid isomers showed quite similar antioxidant activities, indicating that the position of esterification on the quinic moiety of caffeoylquinic acid had no effect on its antioxidant activities. Quite the contrary, a difference among dicaffeoylquinic acid isomers was observed, namely, ICAA and ICAB exhibited the same antioxidant activities, whereas ICAC had higher antioxidant activities than ICAA and ICAB in some assays, which implied that their antioxidant activities were probably influenced by the position of esterification on the quinic moiety. We speculated that this difference might be due to the fact that there may exist a steric hindrance effect in the ICAC. However, this assumption needs to be further confirmed.
Waxy corns are becoming increasingly consumed as fresh foods or as raw materials for whole grain foods facilitating human consumption in China, so they are usually harvested before complete maturity. Unfortunately, information on functional properties of immature waxy corns is very limited. Therefore, we investigated the profiles of carotenoids, anthocyanins, phenolics, and the antioxidant activity in three types of waxy corn with different colors (white, yellow, and black) during maturation, as well as a normal corn (yellow) used as control. The results showed that black waxy corn had the highest quantity of anthocyanins, phenolics and the best antioxidant activity, yellow corn contained a relatively large amount of carotenoids, while white corn had the lowest amounts of carotenoids, anthocyanins, phenolics, and antioxidant capacity. For each type of waxy corn, the higher carotenoids were found at the M2 stage (no major difference between the M1 and M2 stages for yellow corn). The levels of anthocyanin and phenolics decreased for white and yellow corns, contrary to those for black corn during maturation. The antioxidant activity determined by scavenging 2,2-diphenyl-1-picrylhydrazyl (DPPH), the ferric reducing antioxidant power (FRAP), and the Trolox equivalent antioxidant capacity (TEAC) assays increased with ripening, but no difference was found between the M2 and maturity stages for yellow and black corns. For white corn, the DPPH radical scavenging activity first increased and then decreased, while the antioxidant activity determined by TEAC and FRAP assay decreased during maturation. Differences in these parameters indicate that types and harvesting time have significant influences on functional properties of waxy corns.
Abstract:The essential oil of clove has a wide range of pharmacological and biological activities and is widely used in the medicine, fragrance and flavoring industries. In this work, 22 components of the essential oil obtained from clove buds were identified. Eugenol was the major component (76.23%). The essential oil exhibited strong antibacterial activity against Staphylococcus aureus ATCC 25923 with a minimum inhibitory concentration (MIC) of 0.625 mg/mL, and the antibacterial effects depended on its concentration and action time. Kill-time assays also confirmed the essential oil had a significant effect on the growth rate of surviving S. aureus. We hypothesized that the essential oil may interact with the cell wall and membrane first. On the one hand it destroys cell wall and membranes, next causing the losses of vital intracellular materials, which finally result in the bacterial death. Besides, essential oil penetrates to the cytoplasmic membrane or enters inside the cell after destruction of cell structure, and then inhibits the normal synthesis of DNA and proteins that are required for bacterial growth. These results suggested that the effects of the clove essential oil on the growth inhibition of S. aureus may be at the molecular level rather than only physical damage.
Green huajiao, which is the ripe pericarp of the fruit of Zanthoxylum schinifolium Sieb. et Zucc, is widely consumed in Asia as a spice. In this work, the chemical composition of the essential oil from green huajiao was analyzed by gas chromatography (GC) and GC/mass spectrometry (MS), and the majority of components were identified. Linalool (28.2%), limonene (13.2%), and sabinene (12.1%) were found to be the major components. The antibacterial activity, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) of the essential oil were evaluated against selected bacteria, including food-borne pathogens. The results showed that the sensitivities to the essential oil were different for different bacteria tested, and the susceptibility of Gram-positive bacteria tested was observed to be greater than that of Gram-negative bacteria. The antibacterial activity of the essential oil was particularly strong against Staphylococcus epidermidis , with MIC and MBC values of 2.5 and 5.0 mg/mL, respectively. A postcontact effect assay also confirmed the essential oil had a significant effect on the growth rate of surviving S. epidermidis . The antibacterial activity of the essential oil from green huajiao may be due to the increase in permeability of cell membranes, and the leakage of intracellular constituents, on the basis of the cell constituents' release assay and electron microscopy observations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.