Evodiamine (EVO) exhibits strong anti-cancer effects. However, the effect of EVO on the human colorectal cancer cell line HCT-116 has not been explored in detail, and its underlying molecular mechanisms remain unknown. In the present study, cell viability was assessed by Cell Counting Kit-8 (CCK-8). Cell cycle and apoptosis were measured by flow cytometry, and morphological changes in the nucleus were examined by fluorescence microscopy and Hoechst staining. Cell motility was detected by Transwell assay. ELISA was used to assess the protein levels of autocrine motility factor (AMF) in the cell supernatant, and protein expression was determined by Western blotting. Our results showed that EVO inhibited the proliferation of HCT-116 cells, caused accumulation of cells in S and G2/M phases, and reduced the levels of the secreted form of AMF. The protein levels of tumor suppressor protein (p53), Bcl-2 Associated X protein (Bax), B cell CLL/lymphoma-2 (Bcl-2), phosphoglucose isomerase (PGI), phosphorylated signal transducers and activators of transcription 3 (p-STAT3) and matrix metalloproteinase 3 (MMP3) were altered in cells treated with EVO. Taken together, our results suggest that EVO modulates the activity of the p53 signaling pathway to induce apoptosis and downregulate MMP3 expression by inactivating the JAK2/STAT3 pathway through the downregulation of PGI to inhibit migration of HCT-116 human colorectal cancer cells.
In previous experiments, ginsenoside Rh2 induced apoptosis and cell cycle arrest, which indicates a potential role for ginsenoside Rh2 in anticancer treatment. The effect of ginsenoside Rh2 on cancer is marked and ginsenoside Rh2 has been shown to inhibit pancreatic tumor migratory ability. In the present study, Transwell chambers were used in order to investigate whether ginsenoside Rh2 inhibits the migratory ability of HepG2 liver carcinoma cells. Furthermore, to analyze activator protein 1 (AP-1) transcription factor expression following Rh2 treatment, ten plasmids encoding Renilla luciferase coupled to the transcription factors were transiently transfected into the HepG2 cells and luciferase was detected by the Luciferase Reporter Assay system reagent. The results indicated that ginsenoside Rh2 inhibited HepG2 cell migratory ability. The expression levels of AP-1 transcription factors were increased in HepG2 cells following induction by phorbol 12-myristate 13-acetate, but ginsenoside Rh2 suppressed this induced AP-1 expression. AP-1 transcription factors recruit histone deacetylase (HDAC)4 and affect its transcription, thus, the expression levels of HDAC4 were also analyzed, and these were found to be increased in the Rh2 treatment group. Matrix metalloproteinase 3 (MMP3), a gene downstream of AP-1, was then investigated, and the treatment group expressed reduced levels of MMP3 gene and protein. Therefore, the inhibitory effect of ginsenoside Rh2 on the migratory ability of HepG2 may be presumed to occur by the recruitment of HDAC and the resulting inhibition of AP-1 transcription factors, in order to reduce the expression levels of MMP3 gene and protein.
20(S)-ginsenoside Rh2 [(S)Rh2] possesses potential to prevent cancer in vitro as well as in vivo, but the underlying mechanism is still unknown. First, we infected HepG2 cells with lentivirus which carries β‑catenin. We detected the pharmacological effects of (S)Rh2 on HepG2 and HepG2‑β‑catenin cells and found that the IC50 of (S)Rh2 exposure on HepG2-β-catenin cells was higher than HepG2 cells. Flow cytometry (FCM) indicated that (S)Rh2 could be arrested in G0/G1 phase and induce early apoptosis in HepG2 and HepG2‑β‑catenin cells. Second, ELISA kit was used to check the activity of glycogen synthase kinase‑3β (GSK‑3β), which was upregulated by (S)Rh2. GSK‑3β inhibitor BIO, was used to verify that (S)Rh2 activated GSK‑3β. PCR and western blotting results indicated that (S)Rh2 could degrade the expression of β‑catenin, which combined with TCF in the nucleus and activate transcription of Wnt target genes, such as Bax, Bcl‑2, cyclin D1, MMP3, which were checked by chromatin immunoprecipitation (ChIP), PCR and western blotting. The results showed that the expression of Bax mRNA and proteins increased, while the cyclin D1, Bcl‑2, MMP3 mRNA and proteins were downregulated in HepG2 and HepG2‑β‑catenin cells which was induced by (S)Rh2. By contrast, with the HepG2-β-catenin + (S)Rh2 group, the expression of other mRNA and proteins in HepG2 + (S)Rh2 group changed significantly. In vivo, experiments were performed using a nude mouse xenograft model to investigate the (S)Rh2 effect. So these results suggested that (S)Rh2 could suppress proliferation, promote apoptosis and inhibit metastasis of HepG2, decrease weight of tumor by downregulating β‑catenin through activating GSK‑3β and the pharmacological effect of (S)Rh2 on HepG2 cells might be weakened by overexpression of β‑catenin.
Background: Diallyl disulfide (DADS) may exert potent anticancer action both in vitro and in vivo. Although its effects on cancer are significant, the underlying mechanisms remain unknown. In this study, we sought to elucidate possible links between DADS and pyruvate kinase (PKM2). Materials and Methods: KG1α, a leukemia cell line highly expressing PKM2 was used with a cell counting kit (CCK)-8 and flow cytometry (FCM) to investigate the effects of DADS. Relationships between PKM2 and DADS associated with phosphorylation of EGFR, ERK1/2 and MEK, were assessed by western blot analysis. Results: In KG1α cells highly expressing PKM2, we found that DADS could affect proliferation, apoptosis and EGFR/ERK/PKM2 signaling pathways, abrogating EGF-induced nuclear accumulation of PKM2. Conclusions: These results suggested that DADS suppressed the proliferation of KG1α cells, providing evidence that its proapoptotic effects are mediated through the inhibition of EGFR/ERK/PKM2 signaling pathways.
Purpose: To investigate the effect of deacetylase inhibitory trichostatin A (TSA) on anti HepG2 liver carcinoma cells and explore the underlying mechanisms. Materials and Methods: HepG2 cells exposed to different concentrations of TSA for 24, 48, or 72h were examined for cell growth inhibition using CCK8, changes in cell cycle distribution with flow cytometry, cell apoptosis with annexin V-FTIC/PI double staining, and cell morphology changes under an inverted microscope. Expression of β-catenin, HDAC1, HDAC3, H3K9, CyclinD1 and Bax proteins was tested by Western blotting. Gene expression for β-catenin, HDAC1and HDAC3 was tested by q-PCR. β-Catenin and H3K9 proteins were also tested by immunofluorescence. Activity of Renilla luciferase (pTCF/LEF-luc) was assessed using the Luciferase Reporter Assay system reagent. The activity of total HDACs was detected with a HDACs colorimetric kit. Results: Exposure to TSA caused significant dose-and time-dependent inhibition of HepG2 cell proliferation (p<0.05) and resulted in increased cell percentages in G0/ G1 and G2/M phases and decrease in the S phase. The apoptotic index in the control group was 6.22±0.25%, which increased to 7.17±0.20% and 18.1±0.42% in the treatment group. Exposure to 250 and 500nmol/L TSA also caused cell morphology changes with numerous floating cells. Expression of β-catenin, H3K9and Bax proteins was significantly increased, expression levels of CyclinD1, HDAC1, HDAC3 were decreased. Expression of β-catenin at the genetic level was significantly increased, with no significant difference in HDAC1and HDAC3 genes. In the cytoplasm, expression of β-catenin fluorescence protein was not obvious changed and in the nucleus, small amounts of green fluorescence were observed. H3K9 fluorescence protein were increased. Expression levels of the transcription factor TCF werealso increased in HepG2 cells following induction by TSA, whikle the activity of total HDACs was decreased. Conclusions: TSA inhibits HDAC activity, promotes histone acetylation, and activates Wnt/β-catenin signaling to inhibit proliferation of HepG2 cell, arrest cell cycling and induce apoptosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.